首页|基于数据扩充与无阈值递归图的非侵入式负荷识别方法

基于数据扩充与无阈值递归图的非侵入式负荷识别方法

A non-intrusive load identification method based on data augmentation and threshold-free recurrence plot

扫码查看
非侵入式负荷监测技术不仅能将电能流向透明化,还能简化智能电表安装流程,从而有效降低负荷监测成本.为提高非侵入式负荷监测中的负荷识别准确性,提出了基于数据扩充与无阈值递归图的非侵入式负荷识别方法.采用去噪扩散概率模型对小样本负荷数据进行数据扩充,以提升负荷识别方法的鲁棒性;通过去除递归图的Heaviside函数实现无阈值递归图以高效表征负荷特征,并结合Transformer深度学习网络构建负荷识别框架.将所提出的方法应用到3个实测数据集中,实验结果表明,所提方法能有效提高负荷识别准确度,改善分类效果.
Non-intrusive load monitoring(NILM)not only makes the flow of electric energy transparent but also sim-plifies the installation process of smart meters,effectively reducing the cost of load monitoring.To enhance the accu-racy of load recognition in NILM,a method for load recognition based on data augmentation and threshold-free re-currence plot(RP)is proposed.a denoising diffusion probability model(DDPM)is utilized to augment the load data of small samples to enhance the robustness of the load recognition method.Furthermore,a threshold-free RP,achieved by removing the Heaviside function of the recurrence graph,efficiently represents load characteristics.This is combined with a Transformer deep learning network to construct a load recognition framework.The proposed method is applied to three real-world datasets,and experimental results demonstrate its effectiveness in improving load recognition accuracy and enhancing classification performance.

NILMdata augmentationload identificationdeep learningRP

邢海青、郭瑞峰、杨浙川、熊小雨、施永涛

展开 >

国网浙江杭州市余杭区供电公司,杭州 311121

杭州电子科技大学 自动化学院,杭州 310018

非侵入式负荷监测 数据扩充 负荷识别 深度学习 递归图

浙江省重点研发计划浙江大有集团有限公司科技项目

2021C011442021-DY16

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(6)
  • 10