首页|基于GMM-FHMM的工业产线非介入式负荷辨识

基于GMM-FHMM的工业产线非介入式负荷辨识

Non-intrusive load monitoring for industrial production line based on GMM-FHMM

扫码查看
非介入式负荷辨识对于支撑负荷预测、需求响应等应用的开展具有重要意义.针对产线型工业负荷用户子设备独立分解困难的问题,依托产线内设备联动运行的特点,提出了以产线为分解单位的非介入式负荷辨识方案.基于GMM(高斯混合模型)的因子化隐马尔可夫算法,实现了产线级负荷的细粒度呈现.同时,依据工业产线负荷总体规律稳定的特点,提出状态转移概率时间分段的分解模型构建方法,进一步了提升负荷辨识精度.实验结果表明,文中所提模型分别在多状态建模和时间分段阶段取得了性能提升,部分产线上的负荷辨识误差指标最终达到了近20%的下降.
Non-intrusive load monitoring plays a significant role in supporting applications such as load forecasting and demand response. To address the challenge of independently decomposing sub-equipment in industrial load us-ers with production lines,a non-intrusive load monitoring (NILM) scheme is proposed,using the production line as the decomposition unit,based on the interlinked operation of equipment within the line. A factorized hidden Markov model (FHMM),based on Gaussian mixture model (GMM),is employed to achieve a fine-grained representation of load at the production line level. Additionally,a time-segmented state transition probability decomposition model is developed,leveraging the stable overall load patterns of industrial production lines,to further enhance load monitor-ing accuracy. Experimental results demonstrate that the proposed model significantly improves performance in both multi-state modeling and time segmentation,with load monitoring error metrics on some production lines ultimately reduced by nearly 20%.

non-intrusive load monitoringindustrial production lineFHMMGMMstate transition probability

朱亮、支妍力、梅贱生、余萌、胡琛、徐超群

展开 >

国网江西省电力有限公司供电服务管理中心,南昌 330013

国网江西省电力有限公司,南昌 330001

国网江西省电力有限公司抚州供电分公司,江西 抚州 344199

东南大学,南京 211189

展开 >

非介入式负荷辨识 工业产线 因子化隐马尔可夫模型 高斯混合模型 状态转移概率

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(12)