首页|基于边缘神经网络的海岛光伏表面异常检测

基于边缘神经网络的海岛光伏表面异常检测

Surface anomaly detection on island-based PV panels using edge neural networks

扫码查看
光伏表面异常检测对于光伏运维至关重要,而海岛光伏表面异常存在尺寸小、颜色差异小等难题.针对传统检测方法检测精度差和效率低的问题,提出一种基于边缘神经网络的海岛光伏表面异常检测方法.首先,结合卷积神经网络和注意力机制,构建多尺度特征融合的异常检测模型,深入挖掘细粒度异常特征,提升表面异常检测精度;进一步,采用双动态模型压缩技术,压缩冗余通道和特征块,显著降低模型计算复杂度,实现快速且高精度的异常检测.所提方法在舟山海岛光伏表面异常检测业务中表现良好,充分展示了其有效性和优越性.
Surface anomaly detection on photovoltaic (PV) panels is crucial for their operation and maintenance,es-pecially in island environments where challenges such as small anomaly sizes and minimal color differences are prevalent. Due to the poor accuracy and low efficiency of existing detection methods,the paper proposes a surface anomaly detection method for island-based PV panels using edge neural networks. First,by use of convolutional neu-ral networks (CNNs) and attention mechanisms,an anomaly detection model,characterized by multi-scale feature fusion,is constructed to explore the features of fine-grained anomalies,thereby enhancing the surface anomaly de-tection accuracy. Additionally,a dual dynamic model compression technique is employed to reduce redundant chan-nels and feature blocks,significantly lowering the model's computational complexity and enabling rapid and accu-rate anomaly detection. The proposed method demonstrates strong performance in surface anomaly detection on PV panels in Zhoushan,highlighting its effectiveness and superiority.

island-based PV panelsanomaly detectionmodel compressionmulti-scale feature fusion

张引贤、张展耀、张希雅

展开 >

国网浙江省电力有限公司舟山供电公司,浙江 舟山 316100

涿溪脑与智能研究所,杭州 311121

海岛光伏 异常检测 模型压缩 多尺度特征融合

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(12)