首页|基于集成学习的蔗渣灰混凝土抗压强度预测模型

基于集成学习的蔗渣灰混凝土抗压强度预测模型

扫码查看
为了得到高效准确的基于集成学习的蔗渣灰混凝土抗压强度预测模型,建立了 4种集成学习模型,即eXtreme Gradient-Boosting(XGBoost)、Random Forest(RF)、Light Gradient-Boosting Machine(LightGBM)和Adaptive Boosting(AdaBoost);通过模型的性能比较得到了预测能力最优的集成学习模型,然后利用SHAP(Shapley additive explanation)值方法定量研究各输入变量对蔗渣灰混凝土抗压强度的影响.首先,进行蔗渣灰混凝土抗压强度试验,根据试验数据和文献数据构建了包含水泥含量、水灰比、蔗渣灰掺和量、细骨料含量、粗骨料含量等5个输入变量的集成学习数据库.然后,采用决定系数、平均绝对误差、均方根误差、可靠性指数等4个评估指标来评估模型的预测能力.通过对比发现:XGBoost模型的预测精度最高,该模型训练集的评估指标决定系数、平均绝对误差、均方根误差、可靠性指数分别为0.976、1.811、2.344、0.875.各输入变量对蔗渣灰混凝土抗压强度的影响从大到小排序为水泥含量、细骨料含量、粗骨料含量、蔗渣灰掺和量、水灰比;水泥含量对混凝土抗压强度有正面影响,蔗渣灰掺和量低于10%时不会明显降低混凝土的抗压强度.该研究为蔗渣灰混凝土抗压强度的预测和影响因素解释提供了有益参考,对于推动蔗渣灰混凝土等环保型材料的研究和应用具有一定价值.
Models for predicting the compressive strength of bagasse ash concrete based on emsemble learning
To obtain an efficient and accurate ensemble learning model for predicting the compressive strength of sugarcane bagasse ash concrete,four ensemble learning models,namely eXtreme Gradient Boosting(XGBoost),Random Forest(RF),Light Gradient Boosting Machine(LightGBM),and Adaptive Boosting(AdaBoost)were established.The predictive capabilities of these models were compared,and the ensemble learning model with the optimal predictive performance was identified.The Shapley Additive Explanation(SHAP)value method was employed to quantitatively study the impact of each input variable on the compressive strength of sugarcane bagasse ash concrete.Firstly,compressive strength experiments were conducted for sugarcane bagasse ash concrete.Based on experimental data and literature information,an ensemble learning database consisting of five input variables,namely cement content,water-to-cement ratio,sugarcane bagasse ash admixture content,fine aggregate content,and coarse aggregate content,was built.Subsequently,four evaluation metrics,namely determination coefficient,mean absolute error,root mean square error,and reliability index,were used to assess the predictive capabilities of the models.In the performance comparison,it was observed that the XGBoost model exhibited the highest predictive accuracy.The evaluation metrics for the training set of the XGBoost model were determined as follows:determination coefficient of 0.976,mean absolute error of 1.811,root mean square error of 2.344,and reliability index of 0.875.The impact of each input variable on the compressive strength of sugarcane bagasse ash concrete was ranked from highest to lowest as follows:cement content,fine aggregate,coarse aggregate,sugarcane bagasse ash admixture content,and water-to-cement ratio.Cement content had a positive effect on concrete compressive strength,and the compressive strength of concrete was not significantly reduced when the sugarcane bagasse ash admixture content was below 10%.This study provides useful reference for predicting the compressive strength of sugarcane bagasse ash concrete and explaining influencing factors.It holds value in advancing research and applications of environmentally friendly materials such as sugarcane bagasse ash concrete.

ensemble learningsugarcane bagasse ash concretecompressive strengthSHAP value methodpredictive model

林星、梁诗雪、冯斯奕

展开 >

浙江理工大学建筑工程学院,杭州 310018

集成学习 蔗渣灰混凝土 抗压强度 SHAP值方法 预测模型

国家自然科学基金项目浙江省自然科学基金项目浙江理工大学科研业务费专项

51808499LY22E08001624052126-Y

2024

浙江理工大学学报
浙江理工大学

浙江理工大学学报

影响因子:0.311
ISSN:1673-3851
年,卷(期):2024.51(7)
  • 8