首页|自适应无迹卡尔曼滤波算法在水下组合导航系统中的应用

自适应无迹卡尔曼滤波算法在水下组合导航系统中的应用

扫码查看
[目的]解决水下组合导航系统中先验噪声与实际噪声分布不匹配时,融合滤波性能下降问题,提高自主式水下航行器导航精度.[方法]提出一种自适应无迹卡尔曼滤波算法(AUKF),在融合算法中引入自适应因子;重构系统状态方程中速度项与状态变量的结合方式,解决系统方差不一致问题.通过仿真实验和半物理实验验证该算法的有效性.[结果与结论]与无迹卡尔曼滤波算法相比,在平均位置估计偏差上,AUKF算法的纬度均方根误差(RMSE)降低27%,经度RMSE降低27%,高度RMSE降低25%.AUKF在面对偏差对系统状态的扰动时能够有效抑制滤波发散,从而有效地提高自主式水下航行器的导航精度.
Application of Adaptive Unscented Kalman Filter in Underwater Integrated Navigation System
[Objective]To solve the problem of degraded fusion filtering performance in underwater integrated navigation systems when the prior noise distribution does not match the actual noise distribution,and improve the navigation accuracy of autonomous underwater vehicles.[Method]This paper proposed an improved robust adaptive UKF(AUKF)filtering algorithm by introducing adaptive factors to improve the UKF filtering algorithm.The combination of velocity term and state variable in the system state equation was reconstructed to solve the inconsistency problem of system variance.The effectiveness of the proposed algorithm wasverified by ship experiment and semi-physical simulation.[Result and Conclusion]The experimental results show that compared with UKF algorithm,the latitude RMSE,longitude RMSE and height RMSE of AUKF algorithm are reduced by 27%,27%and 25%in terms of average position estimation deviation.Therefore,the improved robust AUKF can effectively suppress the filter divergence in the face of the disturbance of the system,andimprove the navigation accuracy of autonomous underwater vehicle(AUV)in underwater environment.

integrated navigationunscented Kalman filteradaptive factorstrapdown inertial navigationDopper velocity logger

肖鹏飞、许至尊、白虎林、刘洺辛

展开 >

广东海洋大学船舶与海运学院,广东 湛江 524005

广东海洋大学电子与信息工程学院,广东 湛江 524088

组合导航 无迹卡尔曼滤波 自适应因子 捷联惯性导航 多普勒测速仪

国家自然科学基金面上项目广东省自然科学基金面上项目广东省普通高校重点领域专项

621711432021A15150119482021ZDZX1060

2024

广东海洋大学学报
广东海洋大学

广东海洋大学学报

CSTPCDCHSSCD北大核心
影响因子:0.444
ISSN:1673-9159
年,卷(期):2024.44(4)