首页|基于超高分辨和常规超声造影的机器学习模型对淋巴结结核的诊断效能比较

基于超高分辨和常规超声造影的机器学习模型对淋巴结结核的诊断效能比较

扫码查看
目的 探讨在机器学习帮助下超高分辨以及普通超声造影对淋巴结结核的诊断价值。方法 前瞻性收集2021年1月至2024年1月于杭州市红十字会医院就诊的颈部淋巴结肿大患者198例,并按7∶3比例随机分为训练集和验证集,通过机器学习的方法分别建立常规超声造影(Normal CEUS)模型以及高分辨超声造影(HR CEUS)模型,比较并分析两个模型的诊断效能。结果 Normal CEUS模型在训练集以及验证集中的AUC分别为0。820和0。798。HR CEUS模型在训练集以及验证集中的AUC(0。993和0。990)高于Normal CEUS模型,其在验证集中的特异度(100%)也高于Normal CEUS模型的特异度(60。9%)。结论 基于机器学习的超高分辨超声造影模型比常规模型更具有诊断价值。
Objective To explore the diagnostic value of ultra-high resolution contrast-enhanced ultrasound(UHRUS)and conventional contrast-enhanced ultrasound(CEUS)in lymph node tuberculosis with the help of machine learning.Methods Prospective collection of 198 patients with cervical lymphadenopathy who visited Hangzhou Red Cross Hospital from January 2021 to January 2024,and randomly divided them into a training set and a validation set in a 7:3 ratio.Normal CEUS model and HR CEUS model were established using machine learning methods,and the diagnostic efficacy of the two models was compared and analyzed.Results The area under the curve(AUC)of the normal CEUS model in the training set and validation set are 0.820 and 0.798,respectively.The AUC(0.993 and 0.990)of the HR CEUS model in the training and validation sets were higher than those of the normal CEUS model,and its specificity(100%)in the validation set was also higher than that of the normal CEUS model(60.9%).Conclusion The ultra-high resolution CEUS model based on machine learning has better diagnostic value than the conventional CEUS model.

Ultra-high resolution ultrasoundContrast-enhanced ultrasoundMachine learningTuberculosis of lymph nodes

杨高怡、王莹、张莹、陈佩君、童嘉辉、俞跃辉、林婷、颜心怡、罗佳磊

展开 >

310000 杭州市第一人民医院

310000 杭州市红十字会医院

310000 杭州师范大学

310053 浙江中医药大学

展开 >

超高分辨超声 超声造影 机器学习 淋巴结结核

2024

浙江临床医学
浙江中医药大学 浙江省科普作家协会医学卫生委员会

浙江临床医学

影响因子:0.52
ISSN:1008-7664
年,卷(期):2024.26(10)