首页|基于肿瘤坏死因子信号通路相关基因的低级别胶质瘤预后与药物敏感性预测模型的构建与验证

基于肿瘤坏死因子信号通路相关基因的低级别胶质瘤预后与药物敏感性预测模型的构建与验证

扫码查看
目的 基于肿瘤坏死因子(TNF)信号通路相关基因构建低级别胶质瘤预后(LGG)与药物敏感性模型研究。方法 从中国脑胶质瘤基因组图谱计划(chinese glioma genome atlas,CGGA)数据库(http://cgga。org。cn/)中获得LGG患者的RNA测序表达数据和临床数据,共纳入420例患者作为训练组,从癌症基因组图谱(the cancer genome atlas,TCGA)数据库(https://portal。gdc。cancer。gov/repository)下载RNA测序表达数据和匹配的临床信息,共603例作为验证组。应用LASSO-Cox分析构建预测风险评分,采用ROC曲线评价风险评分效能,通过ESTIMATE以及CIBERSORT等算法分析LGG的免疫环境,Oncopredict分析风险评分与治疗药物敏感性的相关性。最后构建列线图,采用校准曲线评价列线图的性能。结果 筛选出7个与LGG预后相关的TNF信号通路相关基因(ACTN4、CARD16、HSPA1B、NKIRAS2、SPPL2A、TNFRSF11A、TRAF5),构建预后评分。Kaplan-Meier生存曲线显示,高风险组患者的总生存期(OS)低于低风险组。风险评分与巨噬细胞M1和调节性T细胞等免疫细胞相关。高风险组的LGG患者表现出更高的替莫唑胺敏感性。多因素Cox回归分析显示风险评分和染色体1p19q联合缺失状态均是LGG患者预后的独立危险因素。结论 基于TNF信号通路相关基因构建的预测模型可用于预测LGG患者的预后以及药物敏感性。
Objective To construct a prognostic and drug sensitivity model of low grade glioma based on tumor necrosis factor(TNF)signaling pathway related genes.Methods A total of 1023 patients were included in this study,and LASSO-Cox analysis was used to construct a predictive risk score.The receiver operating characteristic(ROC)curve was used to evaluate the effectiveness of the risk score.ESTIMATE and CIBERSORT algorithms were used to analyze the immune environment of LGG,and Oncocredit analysis was used to investigate the correlation between risk score and treatment drug sensitivity.Finally,construct a column chart and evaluate its performance using calibration curves.Results Seven TNF signaling pathway related genes(ACTN4 CARD16,HSPA1B,NKIRAS2,SPPL2A,TNFRSF11A,TRAF5)related to LGG prognosis were selected for a prognostic score.The Kaplan Meier survival curve showed that the overall survival(OS)of patients in the high-risk group is lower than that of the low-risk group.Risk score was associated with immune cells such as macrophages M1 and regulatory T cells.LGG patients in the high-risk group exhibited higher sensitivity to temozolomide.Multivariate Cox regression analysis showed that risk score and chromosome 1p19q combined deletion status were independent risk factors for the prognosis of LGG patients.Conclusion The prediction model based on TNF signaling pathway related genes can be used to predict the prognosis and drug sensitivity of LGG patients.

TNF signaling pathwaysLow grade gliomaPrognosisDrug sensitivity

胡加滨、周有良

展开 >

317600 浙江省玉环市中医院

310022 杭州市第一人民医院城北院区

TNF信号通路 低级别胶质瘤 预后 药物敏感性

2024

浙江临床医学
浙江中医药大学 浙江省科普作家协会医学卫生委员会

浙江临床医学

影响因子:0.52
ISSN:1008-7664
年,卷(期):2024.26(10)