首页|基于无人机多光谱影像的云南松林蓄积量估测模型

基于无人机多光谱影像的云南松林蓄积量估测模型

扫码查看
[目的]无人机多光谱遥感影像较可见光影像具有更丰富的光谱信息,在森林蓄积量估测中具有较大潜力。以无人机载多光谱遥感影像为主要数据源,探索森林蓄积量的遥感估测模型,以克服传统地面调查工作量大、耗时长、成本高等弊端。[方法]以滇中地区典型天然云南松Pinus yunnanensis纯林为研究对象,利用无人机多光谱影像提取单波段反射率、各类植被指数、纹理特征等,计算各特征变量的标准地均值;筛选与云南松林蓄积量相关性显著的特征变量,采用多元线性、随机森林、支持向量机建立云南松林蓄积量估测模型,以决定系数(R2)、平均绝对误差(EMA)、均方根误差(ERMS)、平均相对误差(EMR)评价模型精度。[结果]①3种模型中,随机森林的精度最高(R2=0。89,EMA=4。69 m3·hm-2,ERMS=5。45m3·hm-2,EMR=14。5%),其次为支持向量机(R2=0。74,EMA=5。27 m3·hm-2,ERMS=8。31 m3·hm-2,EMR=13。1%),最低为多元线性回归模型(R2=0。35,EMA=10。12m3·hm-2,ERMS=12。85 m3·hm-2,EMR=28。1%);3 种模型在测试集上的估测精度均有所降低,随机森林的模型表现最好,支持向量机次之,多元线性最差。②3种模型在云南松林蓄积量估测中均存在一定的低值高估和高值低估现象。③基于无人机多光谱影像估测云南松林蓄积量,纹理特征仍是不可忽视的重要因子。[结论]基于无人机多光谱影像,在不进行单木分割的情景下,提取标准地的单波段反射率、植被指数、纹理特征均值,筛选适用于蓄积量估算的变量构建估测模型。通过对3种模型进行精度评价,随机森林为云南松林蓄积量估测的最佳模型。图2表5参27
Pinus yunnanensis volume estimation model based on UAV multispectral image
[Objective]Unmanned aerial vehicle(UAV)multispectral remote sensing images,with richer spectral information than visible light images,have great potential in forest volume estimation.Taking UAV-bome multispectral remote sensing images as the main data source,this study aims to explore the remote sensing estimation model of forest volume,so as to overcome the drawbacks of traditional ground survey,such as heavy workload,long time consumption and high cost.[Method]Taking the typical natural pure Pinus yunnanensis forest in Luomian Township,Fumin County,Kunming City as the research object,the single-band reflectance,vegetation index and texture feature were extracted according to the UAV multispectral image,and the standard ground mean of each characteristic variable was calculated.The characteristic variables significantly correlated with the forest volume were screened,and the forest volume estimation model was established using multiple linear regression,random forest and support vector machine.The model accuracy was evaluated by coefficient of determination(R2),root mean square error(ERMS),mean absolute error(EMA)and mean relative error(EMR).[Result](1)Among the three models,the random forest had the highest accuracy(R2=0.89,EMA=4.69 m3·hm-2,ERMS=5.45 m3·hm-2,EMR=14.5%),followed by the support vector machine(R2=0.74,EMA=5.27 m3·hm-2,ERMS=8.31 m3·hm-2,EMR=13.1%).The multiple linear regression model had the minimum accuracy(R2=0.35,EMA=10.12 m3·hm-2,ERMS=12.85 m3·hm-2,EMR=28.1%).The estimation accuracy of the three models in the test set decreased.The random forest had the best performance,followed by the support vector machine,and the multivariate linearity was the worst.(2)The three models had certain underestimation and overestimation in the estimation of P.yunnanensis forest volume.(3)Texture feature was still an important factor that could not be ignored in estimating the forest volume of P.yunnanensis based on UAV multispectral images.[Conclusion]Based on the multi-spectral images of UAV,the single-band reflectance,vegetation index,and texture factor mean values of the standard ground were extracted without individual tree segmentation,and the variables suitable for volume estimation were screened to construct an estimation model.Through the precision evaluation of the three models,the random forest is the best model for estimating P.yunnanensis volume.[Ch,2 fig.5 tab.27 ref.]

forest volumePinus yunnanensis forestsunmanned aerial vehicle(UAV)multispectral imagerandom forestmultiple linear regressionsupport vector regression

邓再春、张超、朱夏力、范金明、钱慧、李成荣

展开 >

西南林业大学林学院,云南昆明 650224

西南林业大学云南省山地农村生态环境演变与污染治理重点实验室,云南昆明 650224

森林蓄积量 云南松林 无人机多光谱影像 随机森林 多元线性回归 支持向量回归

国家自然科学基金资助项目云南省"万人计划"人才培养项目

32160405YNWR-QNBJ-2018-334

2024

浙江农林大学学报
浙江农林大学

浙江农林大学学报

CSTPCD北大核心
影响因子:0.929
ISSN:2095-0756
年,卷(期):2024.41(1)
  • 1
  • 27