首页|潜热通量缺失数据插补方法比较研究

潜热通量缺失数据插补方法比较研究

扫码查看
[目的]分析比较不同插补方法对生态系统潜热通量(FLE)缺失值的插补精度。[方法]利用涡度相关法于2019年对北京市松山国家级自然保护区典型天然落叶阔叶林生态系统FLE与环境要素进行原位连续监测,通过3种插补方法(边缘分布抽样法、线性回归法、人工神经网络法)对FLE缺失数据(0。5 h数据中随机剔除)进行插补,分析实测FLE、插补FLE与环境因子间的关系。[结果]3种插补结果均低估了实测FLE,其中人工神经网络插补值最接近实测值(决定系数R2=0。40)。实测FLE与空气温度(Ta)、饱和水汽压差(DVP)间均呈指数关系。边缘分布抽样法插补FLE与Ta、DVP间的关系最接近实测FLE,然而3种插补方法都不同程度改变了FLE对Ta和DVP的敏感性。[结论]人工神经网络法的插补结果与实测值最接近,边缘分布抽样法的结果与环境因子间的关系最接近实测值与环境因子间的关系,因此未来研究应依据研究目的选取合适的插补方法。图5表1参41
Comparative study of interpolation methods for missing latent heat flux data
[Objective]The aim of this study is to analyze and compare the interpolation accuracy of different interpolation methods for missing latent heat flux value(FLE)in ecosystem.[Method]Eddy-covariance(EC)method was used to continuously monitor FLE and environmental factors of a typical natural deciduous broad-leaved forest ecosystem in Songshan National Nature Reserve,Beijing in 2019.Three interpolation methods,namely marginal distribution sampling method(MDS),linear regression method(REG),and artificial neural network method(ANN)were applied to interpolate the missing FLE data(randomly removed from 0.5 h data),and the relationship between measured FLE,interpolated FLE and environmental factors was analyzed.[Result]All the three interpolation results underestimated the measured FLE,among which ANN interpolation value was the closest to the measured one(R2=0.40).The measured FLE showed an exponential relationship with air temperature(Ta)and saturated vapor pressure deficit(DVP).MDS interpolated the relationship between FLE and Ta and DVP,and was the closest to the measured FLE.All the three interpolation methods changed the sensitivity of FLE to Ta and DVP to varying degrees.[Conclusion]The interpolation results of ANN are the closest to the measured values.The relationship between the results of MDS and environmental factors is the closest to the relationship between measured FLE and environmental factors.Therefore,appropriate interpolation methods should be selected in future research based on the research purpose.[Ch,5 fig.1 tab.41 ref.]

eddy covariancelatent heat fluxdata interpolationdeciduous broad-leaved forest

杨强、李鑫豪、杜韬

展开 >

中国电力工程顾问集团华北电力设计院有限公司,北京 100032

北京林业大学水土保持学院,北京 100083

涡度相关 潜热通量 数据插补 落叶阔叶林

国家自然科学基金青年基金

32101588

2024

浙江农林大学学报
浙江农林大学

浙江农林大学学报

CSTPCD北大核心
影响因子:0.929
ISSN:2095-0756
年,卷(期):2024.41(4)