首页|基于深度学习的高分辨率遥感影像林地变化检测

基于深度学习的高分辨率遥感影像林地变化检测

扫码查看
基于深度学习进行的高分辨率遥感影像林地变化检测,能通过大规模数据训练从双时相高分影像中自动提取林地变化特征,可减少对操作人员的主观经验性依赖,提高林地变化检测效率.本文以浙江省为研究区域,基于World Imagery Wayback高分辨率遥感图像,利用UNet系列、DeepLabV3系列、FCN及SegNet等深度学习模型,通过二分类方法判断林地变化范围.结果表明:(1)本文所使用的各种模型,在测试集上mIoU评估指标均在84.70%以上,Accuracy指标均在92.00%以上,F1-score评估指标均在91.00%以上,Recall评估指标也均在91.00%以上,表现出较好的检测结果.(2)UNet模型各项指标均达到最高,mIoU、Accuracy、F1-score和Re-call评估指标分别为89.54%、95.15%、94.44%及94.13%,但各模型在检测结果中均存在不同程度的边缘轮廓模糊、类内连通不完整现象.(3)为解决检测结果中存在的类内连通不完整及轮廓模糊问题,利用SE、SGAM、CBAM等注意力机制改进性能很好的UNet模型,为验证模型改进的有效性以及排除模型结构差异的影响,对DeepLabV3、DeepLabV3P模型也做相同的改进,以形成对照实验.结果显示,利用通道注意力机制改进的UN-et+SE模型mIoU指标提高最多,为0.18%.但利用空间注意力机制改进的UNet+SGAM、DeepLabV3+SGAM、DeepLabV3P+SGAM模型,其mIoU指标分别降低了1.01%、0.77%、0.67%,因此在检测林地变化时,通道上的特征重要性大于空间上的特征重要性,需加重关注通道特征,降低关注空间特征.基于深度学习进行的高分辨率遥感影像林地变化检测,在各模型中UNet模型的性能指标表现优秀,且模型的通道重要性大于空间重要性,该结论可为林地变化检测提供重要借鉴.
High-Resolution Remote Sensing Image Forest Land Change Detection Based on Deep Learning
Deep learning offers an efficient approach to forest land change detection by automatically extracting change features from dual-time-phase high-resolution images through large-scale data training,reducing reliance on operator experience and enhancing detection efficiency. Focusing on Zhejiang Province,this study utilized high-resolution remote sensing images from World Imagery Wayback and applied deep learning models,includ-ing UNet series,DeepLabV3 series,FCN,and SegNet,for binary classification of forest land changes. All models demonstrated strong performance on the test set,with mIoU above 84.70%,Accuracy above 92%,F1-score above 91.00%,and Recall above 91%. Among them,the UNet model achieved the best results,with mIoU of 89.54%,Accuracy of 95.15%,F1-score of 94.44%,and Recall of 94.13%,though all models showed varying degrees of edge contour blurring and incomplete intra-class connectivity. To address these limitations,the UNet model was improved using attention mechanisms,including SE (Squeeze-and-Excitation),SGAM (Spatial Gated Attention Mechanism),and CBAM (Convolutional Block Attention Module),and simi-lar enhancements were applied to DeepLabV3 and DeepLabV3P models for control experiments. Results showed that the UNet+SE model,leveraging channel attention,achieved the greatest improvement in mIoU (0.18%),while models enhanced with spatial attention (UNet+SGAM,DeepLabV3+SGAM,DeepLabV3P+SGAM) experienced decreases in mIoU by 1.01%,0.77%,and 0.67%,respectively,indicating that channel fea-tures are more critical than spatial features for forest land change detection. These findings confirm the UNet model's superior performance and high-light the importance of prioritizing channel features,providing valuable insights for forest land change detection using deep learning and high-resolu-tion remote sensing imagery.

Woodlanddeep learninghigh-resolution remote sensingchange detection

问青青、王广科、吴达胜

展开 >

金华婺城南山省级自然保护区管理中心,浙江 金华 321000

浙江农林大学 数学与计算机科学学院,浙江 杭州 311300

浙江省林业智能监测与信息技术研究重点实验室,浙江 杭州 311300

林业感知技术与智能装备国家林业和草原局重点实验室,浙江 杭州 311300

展开 >

林地 深度学习 高分遥感 变化检测

2024

浙江林业科技
浙江省林业科学研究院 浙江省林学会 浙江省林业科技情报中心

浙江林业科技

影响因子:0.483
ISSN:1001-3776
年,卷(期):2024.44(6)