首页|基于改进的PSPNet网络的毛白杨根系自动分割量化系统

基于改进的PSPNet网络的毛白杨根系自动分割量化系统

扫码查看
针对毛白杨微根管图像中根系颜色不均匀、形态不一致、目标背景差异小的特点,以及现有根系图像处理软件无法批量分割的问题,提出一个基于深度学习网络的毛白杨根系自动分割量化系统.该系统包括根系图像自动分割和根系特征量化两个部分.首先,提出以 EPSANet50 为骨架的 PSEPNet 网络(pyramid scene efficient parsing network,PSEPNet)实现毛白杨根系图像的自动高精度分割;其次,使用骨架细化法提取根系中心像素轮廓;最后,运用数学统计方法提取根系数量、根系长度等多特征参数,实现对毛白杨根系特征的量化表达.结果表明:PSEPNet网络对毛白杨微根管根系图像具有良好的分割效果,其准确率为 0.981 9,召回率为0.884 9,精确率为0.830 9,F1 值为0.851 2,能够实现对根系数量、根系长度、根系投影面积等特征的量化,可为基于微根管技术对林木生长规律的研究提供技术支持和数据基础.
Automatic segmentation and quantification system for Populus tomentosa roots based on im-proved PSPNet
In the minirhizotron images of Populus tomentosa roots,the root color is uneven,the root morphology is inconsistent,and there is little difference between the target and the background.Moreover,the existing root image processing software can not segment roots in batches.To solve the above problems,an automatic segmentation and quantification system for Populus tomentosa roots is proposed in the present study.This system includes two parts,namely,automatic root image segmentation part and root feature quantification part.Firstly,the PSEPNet(pyramid scene efficient parsing network)based on EPSANet50 is designed to realize the automatic segmentation of Populus tomentosa roots.Secondly,the skeleton thinning method is adopted to extract the pixel contour of the root center.Fi-nally,mathematical statistics are used to realize the quantitative description of root number,root length and other characteristics.The test results show that the segmentation method used by the system has the best segmentation effect for minirhizotron images of Populus tomentosa roots,as the accuracy rate is 0.981 9,the recall rate is 0.884 9,the accuracy is 0.830 9 and the F1 score is 0.851 2.This system can also realize the quantification of root number,root length,root projection area and other characteristics to provide technical support and theoretical basis for the study of tree growth laws based on minirhizotron technology.

minirhizotronPopulus tomentosa rootssemantic segmentationfeature quantification

张鹏翀、韩巧玲、席本野、郑秋燕、赵玥

展开 >

北京林业大学 工学院,北京 100083

城乡生态环境北京实验室,北京 100083

智慧林业研究中心,北京 100083

国家林业和草原局林业装备与自动化国家重点实验室,北京 100083

北京林业大学 省部共建森林培育与保护教育部重点实验室,北京 100083

展开 >

微根管 毛白杨根系 语义分割 特征量化

国家自然科学基金国家自然科学基金青年科学基金中国博士后科学基金北京市共建项目

32071838321015902022T150055

2024

浙江农业学报
浙江省农业科学院 浙江省农学会

浙江农业学报

CSTPCD北大核心
影响因子:0.765
ISSN:1004-1524
年,卷(期):2024.36(2)
  • 20