首页|基于数字图像的大田哈密瓜不同时期冠层相对叶绿素含量检测研究

基于数字图像的大田哈密瓜不同时期冠层相对叶绿素含量检测研究

扫码查看
为探究快速无损获取大田哈密瓜完整冠层相对叶绿素含量的可行性,首先,利用自制的图像采集小车搭载面阵相机,获取不同水肥处理下大田哈密瓜伸蔓期、开花期、膨果期的 378 张完整冠层图像;然后,对图像进行处理后,提取32 种颜色特征和 6 种纹理特征,分析图像特征与冠层相对叶绿素含量的相关性;接着,对图像特征进行预处理后,选取相应的主成分作为模型输入,分别建立用于预测不同时期冠层相对叶绿素含量的多元线性回归(MLR)、支持向量机回归(SVR)、随机森林(RF)模型.对比建模效果发现,SVR模型的效果最好,在伸蔓期、开花期、膨果期,该模型预测值与实测值回归的决定系数分别为 0.73、0.73、0.83,均方根误差分别为0.90、0.91、0.76.研究表明,利用数字图像技术能实现对大田哈密瓜不同时期冠层相对叶绿素含量的快速无损检测,可为大田哈密瓜田间管理提供技术参考.
Detection of relative chlorophyll content of field cantaloupe canopy at different growth stages based on digital images
To explore the feasibility of quickly and non-destructively obtaining the relative chlorophyll content of the complete canopy of field cantaloupe,a self-made image acquisition vehicle equipped with a plane array camera was used in the present study to collect a total of 378 complete canopy images of field cantaloupe during the vine stretc-hing stage,the flowering stage,and the fruit expansion stage,under different water and fertilizer treatments.After image processing,32 color features and 6 texture features were extracted,and the correlation between image features and relative chlorophyll content of canopy was analyzed.After image features being preprocessed,principal compo-nents were selected as model inputs to establish multiple linear regression(MLR),support vector regression(SVR),and random forest(RF)prediction models for the relative chlorophyll content of field cantaloupe canopy at different growth stages.By comparison,it was found that the SVR models had the best performance,as the determi-nation coefficients of the regression within the predicted values and the measured values were 0.73,0.73 and 0.83,respectively,and the root mean squre errors were 0.90,0.91 and 0.76 for the vine stretching stage,the flowering stage and the fruit expansion stage,respectively.It was proved that digital image technology may enable rapid and non-destructive detection of relative chlorophyll content of the field cantaloupe canopy at different growth stages,which could provide technical references for the field management of cantaloupe production.

canopy image of cantaloupechlorophyllimage featuressupport vector regressioncritical growth pe-riod

刘彦岑、郭俊先、郭阳、史勇、黄华、李龙杰、张振振

展开 >

新疆农业大学 机电工程学院,新疆 乌鲁木齐 830052

新疆农业大学 数理学院,新疆 乌鲁木齐 830052

哈密瓜冠层图像 叶绿素 图像特征 支持向量机回归 关键生育期

新疆维吾尔自治区高等学校科研计划自然科学研究重点项目国家自然科学基金

XJEDU2020I00961367001

2024

浙江农业学报
浙江省农业科学院 浙江省农学会

浙江农业学报

CSTPCD北大核心
影响因子:0.765
ISSN:1004-1524
年,卷(期):2024.36(3)
  • 23