首页|基于激光-视觉融合的配怀猪舍内导航建图技术研究

基于激光-视觉融合的配怀猪舍内导航建图技术研究

扫码查看
针对规模生猪养殖场猪舍内复杂设施环境下,现有的纯激光或纯视觉主流导航技术精度不够,影响移动智能装备作业效果的问题,研究建立了深度相机内参标定、激光雷达与深度相机数据融合的前端里程计、后端全面优化、回环检测和建图等方法,比较研究了利用激光-视觉融合建图技术构建的配怀猪舍通道和走廊二维栅格地图和点云地图的效果.结果显示∶融合建立的二维栅格地图较单激光雷达建图的信息量更多,能显示直观的点云图,较完整地展示实际场景中的道路信息与色彩信息,起点与终点坐标的相对误差范围分别为0.02%~0.33%、0.48%~1.62%,明显低于3种算法的激光建图,具有良好的精度和建图效率.
Research on navigation and mapping in pregnancy pig house based on laser-vision fusion technology
Research has been conducted to address the problem of insufficient accuracy of the laser-based or vision-based navigation technologies in the complex facility environment of large-scale pig farms.In the present study,a new method was established by calibrating the intrinsic parameters of depth cameras,fusing data from laser radar and depth cameras for front-end odometry,and comprehensive optimization for back-end processing,loop closure detec-tion,and mapping.A comparative study was conducted to evaluate the effectiveness of constructing 2D grid maps and point cloud maps by using laser-vision fusion mapping technology for passages and corridors.The results demonstra-ted that the fused 2D grid map provided more information than the single laser radar mapping,and it also displayed an intuitive point cloud representation,which could effectively present the road and color information from the actual scene .The relative error ranges for the coornidates of the starting potint and the terminal point were 0.02%-0.33% and 0.48%-1.62%,respectively,which were lower than those of the three algorithms used for laser mapping,in-dicating good accuracy and mapping efficiency.

lidardepth camerasimultaneous localization and mappingfusion navigation mappingpig house

潘梓博、周昕、徐杏、刘凯歌、吉洪湖、路伏增、叶春林、周卫东

展开 >

浙江科技大学 生物与化学工程学院,浙江杭州310023

浙江省农业科学院畜牧兽医研究所,浙江杭州310021

浙江省金华市农业科学研究院,浙江 金华321017

激光雷达 深度相机 同步定位与地图构建 融合导航建图 猪舍

2024

浙江农业学报
浙江省农业科学院 浙江省农学会

浙江农业学报

CSTPCD北大核心
影响因子:0.765
ISSN:1004-1524
年,卷(期):2024.36(10)