首页|基于TCN-Attention-GRU模型的枣树需水量预测

基于TCN-Attention-GRU模型的枣树需水量预测

扫码查看
为提高新疆南疆农业用水效率,针对南疆农业灌溉制度特点,构建了基于TCN-Attention-GRU的枣树需水量预测模型.模型以枣树为研究对象,将气象数据作为模型的输入参数,输出量为枣树需水量.首先采用注意力机制(Attention)将数据进行重要性特征提取,再将处理后的数据送入时间卷积网络(TCN)抓取时序特征融合成一个新的特征向量,最后利用门控单元(GRU)进行预测,根据组合模型的特点与多步预测的验证,所提出的TCN-Attention-GRU组合模型预测良好.经测试,基于TCN-Attention-GRU的枣树需水量预测模型决定系数(R2)达到94.4%,平均绝对百分比误差(MAPE)、均方误差(MSE)分别为7.9%、28.8%,实际值与预测值相对平均误差为12.23%,与其他模型相比该模型具有更高的预测精度,能有效提高水资源利用率.所提出的预测模型可为农业节水稳产提供一定参考.
Water demand prediction of jujube tree based on TCN-Attention-GRU model
In order to improve the efficiency of agricultural water use in southern Xinjiang,a TCN-Attention-GRU-based water demand prediction model for jujube trees was constructed to characterize the agricultural irrigation system in southern Xinjiang.The model took jujube trees as the research object,took meteorological data as the input pa-rameters of the model,and the output quantity was the water demand of jujube trees.Firstly,the attention mecha-nism(Attention)was used to extract the importance features from the data,and then the processed data were sent into the temporal convolutional network(TCN)to grab the temporal features to fuse them into a new feature vector,the final prediction was made using a gating unit(GRU),according to the characteristics of the combined model with the validation of the multi-step prediction,the proposed TCN-Attention-GRU combination model predicted well.The tested TCN-Attention-GRU based jujube trees water demand prediction model determination coefficient(R2)reached 94.4%,mean absolute percentage error(MAPE)and mean square error(MSE)were 7.9%and 28.8%,respec-tively,and the relative average error between the actual value and the predicted value was 12.23%,which had high-er prediction accuracy compared with other models,and it could effectively improve the rate of water resources,and the proposed prediction model provided some references to the agricultural water conservation and stabilization.The proposed prediction model provides a certain reference for agricultural water conservation and stable production.

time convolutional networkcombination modelcrop water demand predictionjujube

李侨、张华东、孙三民、殷彩云

展开 >

塔里木大学水利与建筑工程学院,新疆阿拉尔 843300

塔里木大学现代农业工程重点试验室,新疆阿拉尔 843300

新疆生产建设兵团第一师农业技术推广站,新疆阿拉尔 843300

时间卷积网络 组合模型 作物需水量预测 枣树

2024

浙江农业学报
浙江省农业科学院 浙江省农学会

浙江农业学报

CSTPCD北大核心
影响因子:0.765
ISSN:1004-1524
年,卷(期):2024.36(12)