首页|基于改进野狗优化算法优化极限学习机的空调负荷预测方法

基于改进野狗优化算法优化极限学习机的空调负荷预测方法

扫码查看
针对目前短期空调负荷预测方法预测精度低、稳定性差等问题,提出一种基于微生物遗传算法(Microbial genetic algorithm,MGA)和野狗优化算法(Dingo optimization algorithm,DOA)优化极限学习机(Extreme learning machine,ELM)的空调负荷预测模型.首先利用DOA优化ELM的输入权值和隐层阈值,建立DOA-ELM预测模型,利用MGA改进DOA-ELM模型的预测稳定性和预测精度,建立(Microbial genetic algorithm Dingo optimization algorithm-Extreme learning machine)MDOA-ELM预测模型.为降低预测模型的维度,通过灰色关联分析(GRA)筛选影响空调负荷的输入输出因素.为验证算法有效性,以某工厂中央空调系统为例进行实例分析.实验结果表明,所建负荷预测模型相较于对比模型预测精度高,稳定性好,因此可更好地满足工程实际需求.
Optimization of Extreme Learning Machine for Air-conditioning Load Prediction Based on Improved Dingo Optimization Algorithm
A novel air conditioning load prediction model based on Microbial genetic algorithm(MGA)and Dingo optimization algorithm(DOA)optimized Extreme learning machine(ELM)is proposed in this paper to address the issues of low prediction accuracy and poor stability in short-term air conditioning load prediction methods.A DOA-ELM prediction model is established by using DOA to optimize the input weights and hidden layer thresholds of ELM.An MDOA-ELM prediction model is established by using MGA to improve the prediction stability and accuracy of the DOA-ELM model.To reduce the dimensionality of the prediction model,Grey relational analysis(GRA)is used to screen the input and output factors that affect air conditioning load.An air conditioning load prediction example on the central air conditioning system of a factory is provided to verify the effectiveness of the proposed algorithm.Comparing with the reported model,the experimental results show that the established load prediction model has higher prediction accuracy and better stability,and therefore is able to better meet the actual needs of the project.

Load PredictionMicrobial Genetic AlgorithmDingo Optimization AlgorithmExtreme Learning MachineGrey Relational Analysis

代广超、吴维敏

展开 >

浙江大学工程师学院 杭州 310015

浙江大学控制科学与工程学院 杭州 310027

负荷预测 微生物遗传算法 野狗优化算法 极限学习机 灰色关联分析

2024

制冷与空调(四川)
四川省制冷学会 西南交通大学

制冷与空调(四川)

CSTPCD
影响因子:0.475
ISSN:1671-6612
年,卷(期):2024.38(3)
  • 4