首页|基于GWO-BP神经网络的空调水系统泵阀联调优化控制方法

基于GWO-BP神经网络的空调水系统泵阀联调优化控制方法

扫码查看
空调水系统的节能潜力较大,但管网中却通常存在动态水力不平衡的问题,这不仅影响了空调房间的室内舒适度,还会造成运行能耗的浪费.根据实验实测数据,建立了基于GWO-BP神经网络的水系统管网末端阀门开度预测模型,并根据最小阻力控制的原理,建立了基于神经网络的水系统泵阀联调优化控制方法.实验结果验证了该优化控制方法在优化计算后显著提升了末端阀门的开度,降低了水泵频率,可以有效降低水系统管网阻力并精确调节末端支路流量,对于水泵运行实现了 27.63%至 65.19%的节能率,具有明显的节能效果,且在水系统流量需求越小时,节能效果越好.
Pump-valve Combined Control Optimization Method in Air-conditioning Water System Based on GWO-BP Neural Network
Air conditioning water systems have significant energy-saving potential,but there is usually a dynamic hydraulic imbalance in the pipeline lead to the uncomfortable indoor environment and wasted energy by water pumps.The paper introduces a GWO-BP neural network model using experimental data to predict valve openings in the water system.It proposes a pump-valve combined optimization control method based on minimum resistance control principles.Experimental results demonstrate that this optimization method significantly boosts terminal device valve openings,reduces pump frequency,effectively reduces pipeline resistance and accurately adjusts the flow rate of the terminal branch,the energy consumption of pump can be reduced by 27.63%to 65.19%,having significant energy-saving effect on water pumps,especially when flow demand is lower.

Pump-valve combined controlAir-conditioning water systemMinimum resistance controlNeural network

林则烨、袁中原

展开 >

西南交通大学机械工程学院 成都 610031

泵阀联调 空调水系统 最小阻力控制 神经网络

2024

制冷与空调(四川)
四川省制冷学会 西南交通大学

制冷与空调(四川)

CSTPCD
影响因子:0.475
ISSN:1671-6612
年,卷(期):2024.38(4)