首页|隧道环境自解释型设计下驾驶员情境意识状态分析

隧道环境自解释型设计下驾驶员情境意识状态分析

扫码查看
为探究隧道不同环境自解释型设计下驾驶员的情境意识状态,从高速公路隧道多维环境特征出发,将隧道划分为可变段、过渡段和不变段,通过分析各功能区段内驾驶员的情境意识状态和图式关系,建立情境意识水平预测模型.采用3D Max软件构建仿真实验场景,选取15名驾驶员开展不同隧道环境自解释型设计场景下的驾驶模拟试验,利用眼动仪、心电仪等采集驾驶员的生理、心理及车辆运行状态数据,计算各方案下驾驶员情境意识水平预测值,最后得出试验组中较符合驾驶员情境意识的方案.研究结果表明:渐变组中驾驶员情境意识水平最高的方案是边坡图案倾斜+黄色渐变彩色路面+蓝-白韵律侧墙,比普通隧道场景下情境意识水平预测值增加了 1.181倍;标线组中驾驶员情境意识水平最高的方案是边坡图案倾斜+纵向标线彩色路面+蓝-白韵律侧墙,比普通隧道场景下情境意识水平预测值增加了 1.256倍.隧道路段驾驶员情境意识图式和预测模型可为今后隧道环境自解释型设计提供技术参考.
Analysis of Driver's Situational Awareness State Under Self-explaining Design of Tunnel Environment
In order to explore the situational awareness state of drivers under the self-explaining design of different tunnel environments,starting from the multi-dimensional environmental characteristics of expressway tunnels,the tunnel is divided into variable sections,transition sections and invariant sections.Through analyzing the situational awareness state and schematic relationships of drivers in each functional section,a predictive model of situational awareness level is established.And 3D Max software is used to construct a simulation experiment scene,by selecting 15 drivers to carry out driving simulation experiments under different tunnel environment self-explaining design scenarios.Using eye trackers,electrocardiographs,etc,the driver's physiological,psychological,and vehicle operating status data are collected,and the predicted values of driver's situational awareness level are calculated for each scheme.Finally,the scheme in the experimental group that best fits the driver's situational awareness is obtained.The research results show that the scheme with the highest level of situational awareness of drivers in the gradient group is slope pattern tilted+yellow gradient color road surface+blue-white rhythm side wall,which increases the predicted value of situational awareness level by 1.181 times compared with the ordinary tunnel scene;The scheme with the highest level of situational awareness among drivers in the group is slope pattern slope+longitudinal marking color road+blue-white rhythm side wall,which increases the predicted value of situational awareness level by 1.256 times compared with the ordinary tunnel scene.The situational awareness schema and prediction model for tunnel drivers can provide technical reference for future self-explaining design of tunnel environments.

traffic safetytunnel environmentdriver's situational awarenessenvironmental self-explaining design

万利、袁华智、王玉莹、张长安、李璟、孙昌海

展开 >

山东省交通规划设计院集团有限公司,山东济南 250101

兰州理工大学土木工程学院,甘肃兰州 730050

长安大学运输工程学院,陕西西安 710018

交通安全 隧道环境 驾驶员情境意识 环境自解释型设计

国家自然科学基金资助项目国家自然科学基金资助项目山东省交通科技项目中央高校基本科研业务费专项资金项目兰州理工大学红柳优秀青年人才计划项目

51978069523620502022-KJ-044300102342202062213

2024

公路工程
湖南省交通科学研究院

公路工程

CSTPCD
影响因子:0.942
ISSN:1674-0610
年,卷(期):2024.49(5)