首页|基于集成学习的万古霉素血药浓度及不良反应预测研究

基于集成学习的万古霉素血药浓度及不良反应预测研究

扫码查看
目的 建立万古霉素血药浓度及不良反应预测的集成学习模型,为万古霉素的个体化用药提供参考.方法 采集2021年至2023年湖南师范大学附属长沙医院患者的相关数据.使用逻辑回归、朴素贝叶斯、随机森林、支持向量机、梯度提升决策树、极端梯度提升6种机器学习算法分别建模,同时构造集成学习模型,选择最优特征子集,比较各模型预测能力.结果 共纳入205例病例,基于最优特征子集的集成学习模型预测性能最佳.该模型血药浓度预测均方根误差为7.703,平均绝对误差为6.492;不良反应预测准确度为0.951,F1分数为0.750,AUC为0.959,AUPR为0.850.结论 基于最优特征子集的集成学习模型可准确预测万古霉素血药浓度及不良反应,为万古霉素的个体化精准用药提供依据,确保万古霉素抗感染治疗的有效性及安全性.
Prediction of vancomycin plasma concentration and adverse reactions based on ensemble learning
Objective To establish an ensemble learning model to predict the plasma concentration and adverse reactions of vancomycin,and to provide reference for its individualized medication.Methods The related data of patients from Changsha Hospital of Hunan Normal University from 2021 to 2023 were collected.Six machine learning methods,including Logistic Regression,Naive Bayes,Random Forest,Support Vector Machines,Gradient Boosting Decision Tree and Extreme Gradient Boosting,were used for the modeling.Meanwhile,the ensemble learning model was constructed to select the optimal subset to compare the prediction of models.Results Totally 205 cases were included,and the ensemble learning model based on the optimal subset predicted best.The root mean square error of this model in plasma concentration prediction was 7.703 and the mean absolute error was 6.492.The prediction accuracy of adverse reactions was 0.951,F1 score was 0.750,AUC was 0.959,and AUPR was 0.850.Conclusion The ensemble learning model based on the optimal subset can accurately predict the plasma concentration and adverse reactions of vancomycin,which provides a basis for precise individualized vancomycin anti-infection treatment effectively and safely.

vancomycinplasma concentration predictionadverse reactions predictionmachine learningensemble learningfeature selection

黄魏、李逃明、路经纬、向瑜、李凡、董李晨、谭净文、杨中保、左美玲、旷达彬

展开 >

湖南师范大学附属长沙医院,长沙 410006

湖南师范大学医学院,长沙 410006

中南大学计算机学院,长沙 410006

万古霉素 血药浓度预测 不良反应预测 机器学习 集成学习 特征选择

2024

中南药学
湖南省药学会

中南药学

CSTPCD
影响因子:0.736
ISSN:1672-2981
年,卷(期):2024.22(6)
  • 17