首页|基于序列混合整数凸优化的变体导弹轨迹规划

基于序列混合整数凸优化的变体导弹轨迹规划

扫码查看
针对变后掠角导弹俯冲段的轨迹规划问题,提出一种基于序列混合整数凸优化的轨迹规划方法.提出使用升阻力系数可达集代替攻角约束、后掠角约束和气动代理模型作为导弹控制约束,避免在轨迹规划问题中直接处理强非线性的气动代理模型.注意到可达集由两个区域组成,这使其无法被简单的解析函数描述,故提出使用整数变量来表征对可达集区域的选择,将升阻力系数可达集约束转换成解析的形式.建立变体导弹轨迹规划的最优控制问题,通过重新设计控制量、部分线性化、凹凸分解等方法将其转化为仅含凸约束的最优控制问题,并使用序列混合整数凸优化算法对该问题进行求解.仿真结果表明,提出的算法能可靠地求解出严格满足各类约束的最优飞行轨迹,且变体导弹的终端速度相较于标准构型导弹显著提升.
Trajectory planning of morphing missiles based on successive mixed-integer convex optimization
For trajectory planning of the missile with a variable sweep angle during its dive phase,a trajectory planning method based on successive mixed-integer convex optimization is proposed.In this method,the reachable set of lift and drag coefficients is used as the control constraint of missile to replace the constraint of angle of attack,the constraint of sweep angle,and the aerodynamic surrogate model,so as to avoid directly dealing with the highly nonlinear aerodynamic surrogate model in the trajectory planning problem.It is noted that the reachable set consists of two regions,which prevents it from being described by simple analytical functions.Therefore,the introduction of integer variables to represent the selection of the regions of the reachable set is proposed,which reformulates the reachable set constraint into an analytical form.Subsequently,an optimal control problem for trajectory planning of morphing missiles is established.Through redesigning the control variables,partial linearization,and convex-concave decomposition,the problem is converted into an optimal control problem with only convex constraints,which is then solved by using a successive mixed-integer convex optimization algorithm.Simulation results show that the proposed algorithm can reliably compute the optimal flight trajectory that strictly satisfies all constraints,and significantly enhances the terminal velocity of morphing missiles compared to standard configuration missiles.

morphing missiletrajectory planningoptimal controlsuccessive convex optimizationmixed-integer programmingconvex-concave decompositioncontrol allocation

窦青赟、王研、李雅轩、刘新福

展开 >

北京理工大学宇航学院,北京 100081

变体导弹 轨迹规划 最优控制 序列凸优化 混合整数规划 凹凸分解 控制分配

2024

战术导弹技术
中国航天科工飞航技术研究院(中国航天科工集团第三研究院)

战术导弹技术

CSTPCD北大核心
影响因子:0.304
ISSN:1009-1300
年,卷(期):2024.(4)
  • 6