首页|结合临床与超声影像多模态数据构建小于胎龄儿预测模型

结合临床与超声影像多模态数据构建小于胎龄儿预测模型

扫码查看
[目的]探索结合妊娠早期和妊娠中期的临床数据与超声影像多模态数据对小于胎龄儿(SGA)的预测价值,构建和内部验证基于多种机器学习算法的SGA 预测模型.[方法]本研究回顾性纳入单胎妊娠孕妇1307例,根据INTERGROWTH-21st胎儿生长标准诊断SGA并采集包括临床一般资料、生化检验数据及产前超声筛查数据的多模态数据.轻度梯度增强算法(XGBoost)用于计算变量重要性,七种机器学习算法用于预测模型的构建与内部验证,受试者工作特性曲线下面积(AUC)作为衡量预测效能的主要指标,结合10%假阳性率下的灵敏度进行模型间比较.[结果]基于临床一般资料与生化检验数据构建的最优预测模型AUC为0.70,95%CI(0.609,0.791),灵敏度为0.38,95%CI(0.236,0.519).基于产前超声筛查数据构建的最优预测模型效能优于前者,其AUC为0.77,95%CI(0.687,0.858),灵敏度为0.62,95%CI(0.457,0.743).两个数据集合并组成多模态临床数据集,其最佳预测模型效能进一步提升,AUC为0.91,95%CI(0.851,0.972),灵敏度为0.88,95%CI(0.745,0.947),且模型校准显示拟合优度佳.[结论]本研究采用机器学习算法充分地探索了妊娠早期结合妊娠中期的不同类型临床数据对SGA的预测价值,证明了多模态临床数据用于SGA的筛查的绝对优势,为孕妇个体化管理提供准确且有效的参考依据.
Constructing Prediction Models for Small for Gestational Age Based on Multimodal Clinical and Ultrasonographic Data
[Objective]To explore the predictive value of multimodal clinical and ultrasonographic data in first-and second-trimester for small for gestational age(SGA),so as to build and internally validate SGA prediction models based on multiple machine learning algorithms.[Methods]This retrospective study enrolled 1,307 pregnant women with single-ton pregnancies,diagnosed SGA according to INTERGROWTH-21st fetal growth criteria,and collected multimodal clini-cal data including general clinical information,biochemical test data,and prenatal ultrasound screening data.Extreme gra-dient boosting(XGBoost)algorithm was used to calculate the importance of variables.Seven machine learning algorithms were used to construct and internally verify the prediction models.The area under the receiver operating characteristic curve(AUC)was used as the main indicator to measure the prediction performance and used to compare predictive perfor-mance between models with the sensitivity at a 10%false positive rate.[Results]The optimal prediction model built based on general clinical information and biochemical test data had an AUC of 0.70,95%CI(0.609,0.791)and a sensitivity of 0.38,95%CI(0.236,0.519).The optimal prediction model based on prenatal ultrasound screening data was better than the former,with an AUC of 0.77,95%CI(0.687,0.858)and a sensitivity of 0.62,95%CI(0.457,0.743).The two data sets were combined to form the multimodal clinical dataset,and the performance of the best prediction model was further improved with an AUC of 0.91,95%CI(0.851,0.972)and a sensitivity of 0.88,95%CI(0.745,0.947),and the model calibration showed good goodness of fit.[Conclusion]By using machine learning algorithms to fully explore the predictive value of different types of clinical data for SGA in first-and second-trimester,this study proves the absolute advantages of multimodal clinical data for SGA screening,and provides an accurate and effective reference for personalized management of pregnant women.

small for gestational ageprediction modelmachine learningfirst-trimestersecond-trimester

陈心雨、朱云晓

展开 >

中山大学附属第七医院超声科,广东 深圳 518107

小于胎龄儿 预测模型 机器学习 妊娠早期 妊娠中期

深圳市科技计划项目

JCYJ20190814170205768

2024

中山大学学报(医学科学版)
中山大学

中山大学学报(医学科学版)

CSTPCD北大核心
影响因子:1.608
ISSN:1672-3554
年,卷(期):2024.45(4)