首页|人工智能在颈椎病诊断中的创新与突破

人工智能在颈椎病诊断中的创新与突破

扫码查看
颈椎病是一种常见的脊柱退行性疾病,严重影响患者的生活质量,并可能导致严重的并发症.准确诊断和早期干预对于改善患者预后至关重要.然而,传统的诊断方法在精确性和效率方面存在不足,主要依赖于医生的主观判断和经验,容易导致误诊或漏诊.人工智能(AI)技术近年来在医学诊断领域展现出巨大的潜力,特别是在医学影像分析和病变识别方面.AI技术通过深度学习算法,如卷积神经网络(CNN),能够自动分割和识别影像数据中的病变区域,大幅提高了诊断的准确性和效率.本文综述了AI在颈椎病诊断中的最新研究进展,探讨了其在提高诊断精度和个性化治疗方面的应用潜力,同时分析了当前存在的挑战和未来研究方向,以推动AI技术在颈椎病诊断中的进一步发展和临床应用.
Artificial Intelligence Innovations and Breakthroughs in Cervical Spondulicks Diagnosis
Cervical spondylosis is a common degenerative spinal disease that severely impacts patients' quality of life and may lead to serious complications. Accurate diagnosis and early intervention are crucial for improving patient outcomes. However,traditional diagnostic methods have limitations in precision and efficiency,primarily relying on clinicians' subjective judgment and experience,which can result in misdiagnosis or missed diagnosis. Recent advancements in artificial intelligence (AI) technology have shown significant potential in the field of medical diagnostics,particularly in medical imaging analysis and lesion identification. AI technologies,through deep learning algorithms such as convolutional neural networks (CNNs),can automatically segment and identify lesion areas in imaging data,significantly enhancing diagnostic accuracy and efficiency. This paper reviews the latest research developments in AI for cervical spondylosis diagnosis,explores its potential in improving diagnostic precision and personalized treatment,and analyzes the current challenges and future research directions to promote further development and clinical application of AI technologies in cervical spondylosis diagnosis.

artificial intelligencecervical spondylosismachine learningdeep learningconvolutional neural networks

高鑫海、何升华

展开 >

广州中医药大学第四临床医学院,广东广州510000

深圳市中医院骨伤科二病区,广东深圳518000

人工智能 颈椎病 机器学习 深度学习 卷积神经网络

2024

中山大学学报(医学科学版)
中山大学

中山大学学报(医学科学版)

CSTPCD北大核心
影响因子:1.608
ISSN:1672-3554
年,卷(期):2024.45(6)