首页|基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断

基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断

扫码查看
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断.将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广.用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别.实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快.
Fault Diagnosis of Planetary Gear Box Based on Gramian Angular Fields and Deep Convolutional Generative Adversarial Network
Aiming at the problems of poor generalization ability and low diagnosis accuracy due to uneven sample distribution in planetary gearbox fault diagnosis,data enhancement was carried out based on the combination of Gramian angular field coding technology and deep convolutional generative adversarial network,and Alexnet convolution neural network was fused for fault diagnosis.The collected one-dimensional vibration signal is converted into Gramian angular fields.The training set and test set are divided proportionally.And the samples and random vectors of the training set are input into the deep convolutional generative adversarial network model to alternately train the generator and discriminator until the Nash balance is reached.Then,the samples similar to the original samples are generated,and the augmentation of fault samples is realized.Finally,the original samples and the generated augmented samples are used to train the convolutional neural network classification model to complete the fault identification of the planetary gearbox.The experimental analysis results show that the proposed method can effectively improve the fault diagnosis accuracy of the planetary gearbox under the condition of uneven samples,the accuracy is up to 99.15%,and meanwhile it has faster convergence speed.

fault diagnosisGramian angular fieldsdeep convolutional generative adversarial networkconvolutional neural networkplanetary gear box

古莹奎、石昌武、陈家芳

展开 >

江西理工大学 机电工程学院,江西 赣州 341000

故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱

国家自然科学基金资助项目江西省自然科学基金重点资助项目

6196301820212ACB202004

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(1)
  • 3