首页|基于稀疏编码的复杂机械振动信号盲分离方法

基于稀疏编码的复杂机械振动信号盲分离方法

扫码查看
复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳.对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法.盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中相关成分的存在严重影响混合矩阵的估计.对此,首先对观测信号进行短时傅里叶变换,增加信号稀疏性;然后利用稀疏编码筛选出具备直线聚类特性的时频观测点,利用K均值(K-means)聚类法找到聚类中心;最后利用所提筛选规则找到估计的混合矩阵,重构出源信号.通过对往复压缩机故障数据的分析,验证了所提方法有效性.
Blind Separation Method of Complex Mechanical Vibration Signals Based on Sparse Coding
There exist many excitation sources in complex mechanical vibration signals,so the source signals are mutually correlated sources,and they are difficult to meet the statistical independent characteristics,which leads to the poor separation effect of the traditional blind source separation method.Therefore,a blind separation method of mechanical vibration signals based on sparse signal coding is proposed.The key to the blind source separation lies in the precise estimation of the mixing matrix.However the presence of relevant components in the sources of the machine severely affects the estimation of the mixing matrix.In the proposed method,the short-time Fourier transform is carried out on the observed signal to increase the signal sparsity.Then,the sparse coding is used to screen the time-frequency observation points which have the strait line clustering feature,and the K-means clustering method is used to find the clustering center.Finally,the proposed screening method is used to find the estimated mixing matrix and reconstruct the source signal.The effectiveness of the proposed method is verified by analyzing the fault data of a reciprocating compressor.

vibration and waveblind source separationrelated sourcesparse codingstraight line clusteringcompressor fault signal

王金东、王畅、赵海洋、李彦阳、曹威龙、黄飞虎

展开 >

东北石油大学 黑龙江省石油机械工程重点实验室,黑龙江 大庆 163000

振动与波 盲源分离 相关源 稀疏编码 直线聚类 压缩机故障信号

黑龙江省自然科学基金资助项目

LH2021E021

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(1)
  • 7