首页|深水网箱振动信号特征提取及消噪方法研究

深水网箱振动信号特征提取及消噪方法研究

扫码查看
针对传统变分模态分解在处理深海网箱振动信号时严重依赖于模态阶数和二次惩罚因子的参数选择问题,提出了一种基于狼群优化算法的变分模态分解方法.通过引入狼群优化算法和适应度函数优化分解,克服了变分模态分解在参数设置不当时造成的模态丢失或混叠的问题,从而实现了无先验知识情况下深水网箱振动信号的降噪及最优特征提取.为了验证提出方法的有效性,首先使用四自由度数值系统验证了提出方法的正确性,然后开展了坐底式深水网箱现场测试,并对实测数据进行结构特征信息提取及信号降噪,结果显示提出方法可以选择最佳的模态参数和惩罚因子实现信号的准确特征提取,验证了该方法在用于坐底式深水网箱结构安全监测时的有效性和实用性.
Research on Feature Extraction and De-noising Method of Vibration Signals of Deep-water Cages
Aiming at the parameter selection problem that the traditional variational modal decomposition relies heavily on the modal order and quadratic penalty factor when dealing with vibration signals of deep-sea cages,a variational modal decomposition(VMD)method based on the wolf group optimization algorithm is proposed.By introducing the wolf pack optimization algorithm and the optimal decomposition of the fitness function,the shortcoming of modal loss or aliasing caused by the variational modal decomposition when the parameters are set incorrectly is overcome.And the noise reduction and optimal feature extraction of vibration signals in deep-water cages without prior knowledge are realized.A 4-DOF numerical system is introduced to verify the correctness and effectiveness of the proposed method.Then,the measured data of a seated deep-water cage is used to extract structural feature information and reduce the signal noise.The results show that the proposed method can select the optimal modal parameters and penalty factors so as to realize accurate feature extraction of signals,which verifies the effectiveness and practicability of the method for safety monitoring of seated deep-water cage structures.

acousticsdeep-water cagefeature extractionnoise reductionVMDgroup optimization algorithm

王娜娜

展开 >

烟台汽车工程职业学院,山东 烟台 265599

声学 深水网箱 特征提取 信号降噪 变分模态分解 群优化算法

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(1)
  • 6