噪声与振动控制2024,Vol.44Issue(1) :199-204.DOI:10.3969/j.issn.1006-1355.2024.01.031

基于RBF-PSO算法的潜艇尾部结构噪声优化

Structural Noise Optimization of Submarine Tail Based on RBF-PSO Algorithm

李舒成 张冠军 柯昱照
噪声与振动控制2024,Vol.44Issue(1) :199-204.DOI:10.3969/j.issn.1006-1355.2024.01.031

基于RBF-PSO算法的潜艇尾部结构噪声优化

Structural Noise Optimization of Submarine Tail Based on RBF-PSO Algorithm

李舒成 1张冠军 1柯昱照1
扫码查看

作者信息

  • 1. 武汉理工大学 船海与能源动力工程学院,武汉 430063;武汉理工大学 高性能船舶技术教育部重点实验室,武汉 430063
  • 折叠

摘要

针对潜艇尾部结构噪声突出问题,选取潜艇尾部桨轴艇耦合模型为研究对象,以潜艇尾部质量为约束条件,以纵向、横向激励力下的水下潜艇尾部辐射声功率级为优化目标,设计以尾壳板厚度、T型材结构参数(面板宽、腹板高、面板厚度、腹板厚度)为设计变量的均匀试验设计,采用径向基函数(Radia Basis Function,RBF)神经网络构建反映设计变量与优化目标之间映射关系的代理模型,使用粒子群算法(Particle Swarm Optimization,PSO)对潜艇尾部噪声进行多目标优化.研究表明:纵向激励下潜艇尾部水下辐射声功率合成级降低3.79 dB,横向激励下潜艇尾部水下辐射声功率合成级降低1.55 dB,潜艇尾部质量降低3.424 t.将RBF-PSO算法应用于潜艇尾部结构低频噪声优化问题效果较好,可以为潜艇的结构噪声优化提供指导.

Abstract

The problem of the structural noise of the submarine tail is studied.The propeller shaft coupling model of the submarine tail is selected as the research object.The submarine tail mass is taken as the constraint condition,and the radiated sound power level of the underwater submarine tail under the longitudinal and transverse excitation is taken as the optimization objective.A uniform experimental design is established with the thickness of the tail shell plate and the structural parameters of the T-section(panel width,web height,panel thickness,web thickness)as the design variables.The radial basis function(RBF)neural network is used to build a proxy model of the mapping relationship between design variables and optimization objectives,and particle swarm optimization(PSO)is used to optimize the submarine tail noise.The research shows that under longitudinal excitation and transverse excitation,the underwater radiated sound power synthesis levels of the submarine tail are reduced by 3.79 dB and 1.55 dB respectively,and the submarine tail mass is reduced by 3.424 t.Using RBF-PSO algorithm to optimize the low-frequency noise of submarine tail structure can obtain better effect.This work may provide a guidance for the optimization of submarine structure noise.

关键词

声学/RBF神经网络/粒子群算法/潜艇尾部/噪声优化

Key words

acoustics/RBF neural network/particle swarm optimization algorithm/submarine tail/noise optimization

引用本文复制引用

基金项目

国家自然科学基金资助项目(51909201)

高性能船舶技术教育部重点实验室开放基金课题资助项目(gxnc18041401)

出版年

2024
噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
参考文献量7
段落导航相关论文