首页|基于伪标签深度学习的半监督滚动轴承故障诊断模型

基于伪标签深度学习的半监督滚动轴承故障诊断模型

扫码查看
针对实际工程应用中被标记的滚动轴承故障样本收集困难,传统诊断模型精度较低的问题,提出一种伪标签学习融合参数迁移深度学习网络的半监督滚动轴承故障诊断模型.首先将ImageNet数据集上预训练的残差网络(Residual Network,ResNet)模型参数迁移至本文模型中作为初始参数,并使用不同学习率微调网络层参数以加快模型收敛速度;随后引入伪标签半监督学习,使用标签数据训练模型并对无标记数据进行预测以生成伪标签;最后使用标签数据以及伪标签数据训练参数迁移后的ResNet模型,并测试诊断效果.对两种滚动轴承故障数据进行半监督下故障诊断实验及跨域故障诊断实验.实验结果表明,在具有大量未标记样本集下,所提出模型可迁移至不同设备完成诊断,具有较强的鲁棒性,可用于处理复杂工业环境中的故障诊断问题.
Fault Diagnosis Model of Semi-supervised Rolling Bearings Based on Pseudo-label Deep Learning
In view of the difficulty of collecting the marked rolling bearing fault samples and low accuracy of traditional diagnosis models in practical engineering applications,a semi-supervised rolling bearing fault diagnosis model based on a pseudo-label learning fused parameter migration deep learning network was proposed.Firstly,the parameters of the pre-trained residual network(ResNet)model on the ImageNet dataset were transferred into this model as the initial parameters,and the network layer parameters were finely tuned using different learning rates to accelerate the model convergence.Then,the model was trained with labeled data and predicted with unlabeled data using pseudo-label semi-supervised learning.Finally,a ResNet model with migrated parameters was trained using labeled and pseudo-labeled data,and the diagnostic effect was evaluated.The semi-supervised fault diagnosis experiments and cross-domain fault diagnosis experiments were carried out on the two kinds of rolling bearing fault data.It is shown that the proposed model can be migrated to various devices in order to complete the diagnosis with a large set of unlabeled samples.It has high robustness and can be used to solve fault diagnosis problems in complex industrial settings.

fault diagnosisrolling bearingsemi-supervised learningdeep transfer learning

宋宇航、马萍、李建军、张宏立

展开 >

新疆大学 电气工程学院,乌鲁木齐 830017

新疆大学 工程训练中心,乌鲁木齐 830017

故障诊断 滚动轴承 半监督学习 深度迁移学习

新疆维吾尔自治区自然科学基金新疆维吾尔自治区自然科学基金国家自然科学基金国家自然科学基金

2022D01E332022D01C3675206506452267010

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(2)
  • 15