首页|针对汽轮机转子故障样本不足的典型故障检测方法研究

针对汽轮机转子故障样本不足的典型故障检测方法研究

扫码查看
目前深度学习在机械系统的故障诊断方面得到较大普及和发展,这些智能模型需要大量的训练数据确保其泛化能力.然而实际汽轮机转子故障数据缺乏或者难以获取,这给智能故障诊断带来新的挑战.提出一种基于汽轮机转子数值模拟生成故障数据并进行智能故障诊断的方法,通过建立转子有限元模型,生成能够反映其工作状态的故障信息,从而为智能模型提供数据样本.采用根据实际转子信号建立的高精度转子有限元模型,能够有效解决故障样本不足的问题,从而提高智能诊断准确率.通过将有限元技术与深度卷积神经网络相结合,所提出的方法能够在故障样本不足及部分故障信号难以测量的情况下实现汽轮机转子端到端的智能故障诊断,具有准确率高、鲁棒性强的特点.
Study on Typical Fault Detection Method for Insufficient Turbine Rotor Fault Samples
Currently,deep learning has achieved greater popularity and development in fault diagnosis of mechanical systems,and these intelligent models require a large amount of training data to ensure their generalization capability.However,the lack of or difficulty in obtaining actual turbine rotor fault data poses a new challenge for intelligent fault diagnosis.In this paper,a method for generating fault data and performing intelligent fault diagnosis based on numerical simulation of turbine rotors is proposed.By building a finite element model of the rotor,the fault information which reflects the operating condition of the rotor is generated to provide data samples for the intelligent model.Then,a high-precision rotor finite element model based on actual rotor signals is established,which can effectively solve the problem of insufficient fault samples and increase the accuracy of intelligent diagnosis.Through the combination of finite element technique and deep convolutional neural network,the proposed method can realize the end-to-end intelligent fault diagnosis of turbine rotors under the condition of insufficient fault samples and the difficulty of measuring some faults,meanwhile it has the advantages of high accuracy and strong robustness.

fault diagnosissteam turbine rotornumerical simulationinsufficient fault sampledeep convolutional neural networkintelligent fault diagnosis

吴董炯、何群山

展开 >

上海电机学院 工业技术中心,上海 201306

上海海事大学 自贸区供应链研究院,上海 201306

故障诊断 汽轮机转子 数值模拟 故障样本不足 深度卷积神经网络 智能故障诊断

国家自然科学基金

51875332

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(3)
  • 13