首页|基于改进PSO-VMD-MCKD的滚动轴承故障诊断

基于改进PSO-VMD-MCKD的滚动轴承故障诊断

扫码查看
针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法.首先基于VMD方法选取故障信号的最优模态分量,然后采用MCKD算法增强最优分量信号中的冲击成分,最后通过包络谱分析提取滚动轴承的故障频率.利用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD算法中的参数α和K以及MCKD算法中的参数L和M进行寻优,并对PSO算法中惯性因子和学习因子的更新方法加以改进,以提高参数寻优过程的收敛速度.仿真分析和试验结果表明,所提出的诊断方法可以有效提取被强噪声淹没的滚动轴承故障特征.
Rolling Bearing Fault Diagnosis Based on Improved PSO-VMD-MCKD
A fault diagnosis method combining variational modal decomposition(VMD)and maximum correlated kur-tosis deconvolution(MCKD)is proposed to overcome the difficulty of extracting fault features from rolling bearing signals in strong noise backgrounds.Firstly,the optimal modal components of the fault signal are selected based on the VMD meth-od.Then,the MCKD algorithm is used to enhance the impact components in the optimal component signal.Finally,the fault frequency of the rolling bearing is extracted through envelope spectrum analysis.The particle swarm optimization(PSO)al-gorithm is used to optimize the parameters α and K in the VMD algorithm and the parameters L and M in the MCKD algo-rithm.The update methods of the inertia factor and learning factor in the PSO algorithm are improved to raise the conver-gence speed of the parameter optimization process.Simulation analysis and experimental results show that the proposed method can effectively extract the fault features of rolling bearings that are submerged in strong noise background.

fault diagnosisrolling bearingvariational modal decomposition(VMD)maximum correlated kurtosis deconvolution(MCKD)particle swarm optimization(PSO)

宿磊、刘智、顾杰斐、李可、薛志钢

展开 >

江南大学 机械工程学院 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122

江苏省特种设备安全监督检验研究院无锡分院,江苏 无锡 214071

故障诊断 滚动轴承 变分模态分解 最大相关峭度解卷积 粒子群优化

国家自然科学基金资助项目

52175096

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(4)
  • 9