噪声与振动控制2024,Vol.44Issue(4) :145-152.DOI:10.3969/j.issn.1006-1355.2024.04.022

基于CEEMDAN-FastICA-MCNN的多传感信息融合轴承故障诊断

Bearing Fault Diagnosis Based on CEEMDAN-FastICA-MCNN Multi-sensor Information Fusion

张鑫 钟倩文 余佑民 彭乐乐 郑树彬 陈谢祺
噪声与振动控制2024,Vol.44Issue(4) :145-152.DOI:10.3969/j.issn.1006-1355.2024.04.022

基于CEEMDAN-FastICA-MCNN的多传感信息融合轴承故障诊断

Bearing Fault Diagnosis Based on CEEMDAN-FastICA-MCNN Multi-sensor Information Fusion

张鑫 1钟倩文 1余佑民 2彭乐乐 1郑树彬 1陈谢祺1
扫码查看

作者信息

  • 1. 上海工程技术大学 城市轨道交通学院,上海 201620
  • 2. 上海地铁维护保障有限公司车辆分公司,上海 200031
  • 折叠

摘要

针对轴承振动信号易受噪声干扰、变工况及单一传感器提取特征信息不完备的问题,提出基于自适应噪声完备集成经验模态分解(Complete Ensemble Empirical Mode Decomposition of Adaptive Noise,CEEMDAN)、快速独立分量(Fast Independent Components Analysis,FastICA)降噪和多输入卷积神经网络(Multiple-input Convolutional Neural Networks,MCNN)的多传感信息融合轴承故障诊断方法.首先分别对多传感采集的振动信号划分数据集,并输入CEEMDAN得到本征模态函数(Inherent Nodal Function,IMF);随后,选择峭度大于3的IMF构造观测信号,其余IMF构造虚拟噪声信号,作为两个输入源输入FastICA,分离出特征向量;最后,设计MCNN识别故障类型.在CWRU和XJ-TU-SY数据集上的正确率分别为99.94%和99.64%.在信噪比为-8 dB的抗噪性能测试中,正确率分别为96.95%和98.29%;在信噪比为0dB的抗噪性能测试中,正确率分别为99.00%和99.23%.对比实验结果表明此方法能够提取更为全面的故障特征信息,获得更高的准确率.

Abstract

Aiming at the problems that vibration signal of bearing is easy to be interfered by noise and variable operat-ing conditions,and its feature information extracted by a single sensor is incomplete,a bearing fault diagnosis method based on complete ensemble empirical mode decomposition of adaptive noise(CEEMDAN),fast independent components analysis(FastICA)denoising and multiple-input convolutional neural networks(MCNN)is proposed.Firstly,the vibration signals collected by multiple sensing are divided into data sets separately and the CEEMDAN is used to obtain Inherent Modal func-tions(IMFs).Then,the IMFs with the kurtosis greater than 3 are selected to construct observation signal,the remaining IMFs are used to construct virtual noise signal.They are input to FastICA as two input sources to separate the feature vec-tors.Finally,MCNN is designed to identify fault types.The results show that the accuracy on the CWRU and XJTU-SY data sets is up to 99.94%and 99.64%.The accuracy is 96.95%and 98.29%in the anti-noise performance test with signal to noise ratio(SNR)of-8 dB.The accuracy is 99.00%and 99.23%in the anti-noise performance test with SNR of 0.The comparative experimental results show that the method can extract more comprehensive fault feature information and obtain higher accuracy of extraction.

关键词

故障诊断/CEEMDAN/FastICA/MCNN

Key words

fault diagnosis/CEEMDAN/FastICA/MCNN

引用本文复制引用

基金项目

国家自然科学基金资助项目(51907117)

国家自然科学基金资助项目(51975347)

上海市科技计划资助项目(22010501600)

上海申通地铁集团资助项目(JS-KY21R008-6)

上海申通地铁集团资助项目(JS-KY20R013-3)

出版年

2024
噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
参考文献量14
段落导航相关论文