首页|主减速器故障的增强多尺度微分符号熵和优化SVM诊断

主减速器故障的增强多尺度微分符号熵和优化SVM诊断

扫码查看
为准确提取出能够表征车辆主减速器故障的故障特征,同时针对多尺度微分符号熵(Multi-scale Differen-tial Symbolic Entropy,MDSE)粗粒化过程中存在的问题,提出增强多尺度微分符号熵(Enhanced Multi-scale Differen-tial Symbolic Entropy,EMDSE)的概念,并结合蝴蝶算法(Butterfly Optimization Algorithm,BOA)优化的支持向量机(Support Vector Machine,SVM),提出主减速器故障诊断的EMDSE和BOA-SVM方法.EMDSE可解决MDSE粗粒化过程中存在的信息泄露和计算结果不稳定的不足,能够更加有效地利用信号中存在的故障信息.主减速器故障诊断实例结果表明,相比于MDSE,EMDSE的计算结果更稳定,对主减速器不同故障状态的可区分性更强,BOA-SVM得到的诊断精度更高.
Main Reducer Fault Diagnosis Based on Enhanced Multi-scale Differential Symbolic Entropy and Optimized SVM
In order to accurately extract the fault features that can represent the fault of the vehicle's main reducer,and to solve the problems existing in coarse granulating process of the multi-scale differential symbolic entropy(MDSE),the concept of enhanced multi-scale differential symbolic entropy(EMDSE)was proposed.Combined with the support vector machine(SVM)optimized by butterfly optimization algorithm(BOA),a main reducer fault diagnosis method based on EMDSE and BOA-SVM was presented.The EMDSE solves the problems of information leakage and unstable calculation re-sults in the process of MDSE coarse granulating,and can make more effective use of the fault information in the signal.The example results of main reducer fault diagnosis show that,compared with MDSE,the calculation results of EMDSE are more stable and can distinguish different fault states of the main reducer more precisely,and the diagnostic accuracy ob-tained by BOA-SVM is higher.

fault diagnosismain reducerdifferential symbolic entropymulti-scaleenhance

汪会财、徐婷婷、胡晓锐、龙羿、池磊、唐述

展开 >

国网重庆市电力公司,重庆 400015

重庆邮电大学 计算机科学与技术学院,重庆 400065

故障诊断 主减速器 微分符号熵 多尺度 增强

国家自然科学基金资助项目重庆市技术创新与应用发展专项面上资助项目

61601070cstc2020jscxmsxmX0135

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(4)
  • 11