首页|频域特征提取联合双流CNN的轴承故障诊断方法

频域特征提取联合双流CNN的轴承故障诊断方法

扫码查看
针对传统方法提取到的轴承各类故障特征混杂,部分类别故障不易区分的问题,设计一种双流卷积神经网络(Convolutional Neural Network,CNN)的故障诊断模型.首先将振动信号转换到频域,为减少低频微弱信号的干扰,过滤频域信号,设定滤波器通带和阻带衰减值以保证信号不失真,进而确定频率带宽,在该带宽值下求得信号振幅占比最大值的范围,同时以正常信号振幅平均值作为高频信号的阈值确定频率最高值.用上述参数分别作为滤波器的参数,过滤信号得到频谱信号和构建时频图像.将提取频谱信号和时频图作为模型两个通道的输入,在卷积层和池化层后加入特征融合层,通过加权融合的方式将两个通道的特征融合,使得各类故障特征区分度显著提高.实地搭建故障平台采集数据验证,实验结果表明,该方法能提取到每类故障独有的特征,轴承故障识别准确率达到98.95%.
Bearing Fault Diagnosis Based on Frequency Domain Feature Extraction and Combined Dual-stream CNN
Aiming at the problem that various fault features of bearings extracted by traditional methods are mixed and some types of faults are hardly to be distinguished,a fault diagnosis model based on dual-stream convolution neural network(CNN)is designed.Firstly,the vibration signal is converted to the frequency domain.In order to reduce the interference of low frequency weak signal,the frequency domain signal is filtered and the passband and stopband attenuation values of the filter are determined to ensure that the signal is not distorted.Then,the frequency bandwidth is determined,and the range of the maximum signal amplitude ratio is obtained under this bandwidth value.At the same time,the average value of the normal signal amplitude is used as the threshold value of the high-frequency signal to determine the maximum frequency.The above parameters are used as the parameters of filters,and the signal is filtered to obtain the spectrum signal and construct the time-frequency image.The extracted spectrum signal and time-frequency map are used as the input of the two channels of the model.A feature fusion layer is added behind the convolution layer and the pooling layer.The features of the two channels are fused by weighted fusion,which significantly improves the discrimination of various fault features.A fault platform is built to collect data for verification.The experimental results show that the method can extract the unique features of each type of fault,and the accuracy of bearing fault identification reaches 98.95%.

fault diagnosisfeature extractionconvolution neural networkwave filtertime frequency diagramfeature fusion

田野、陈姚节、张莉、陈黎

展开 >

武汉科技大学 计算机科学与技术学院,武汉 430065

武汉晴川学院 计算机学院,武汉 430204

故障诊断 特征提取 卷积神经网络 滤波器 时频图 特征融合

国家自然科学基金资助项目

62271359

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(4)
  • 12