首页|基于自适应CYCBD和DARTS的滚动轴承故障诊断方法

基于自适应CYCBD和DARTS的滚动轴承故障诊断方法

扫码查看
针对强噪声导致滚动轴承振动信号故障特征不明显的问题,提出一种结合自适应最大2阶循环平稳盲解卷积(Maximum Second-order Cyclostationary Blind Deconvolution,CYCBD)与可微架构自搜索(Differentiable Architecture Search,DARTS)的故障诊断方法.首先将模糊熵作为鲸鱼优化算法的适应度函数进行CYCBD滤波器长度寻优,并以峭度-包络谱峰值为综合指标对循环频率进行步长寻优,从而实现自适应CYCBD降噪;然后引入DARTS算法实现滚动轴承故障识别模型的自构建;最后通过滚动轴承公开数据与实验数据验证多域强噪声环境下自适应CYCBD-DARTS故障诊断方法的有效性.
Bearing Fault Diagnosis Method Based on Adaptive CYCBD and DARTS
In order to solve the problem of non-obvious fault features of rolling bearing vibration signals due to strong background noise,a bearing fault diagnosis method combining adaptive maximum second-order cyclostationary blind deconvolution(CYCBD)with differentiable architecture search(DARTS)was proposed.Firstly,the fuzzy entropy was used as the fitness function of the whale optimization algorithm to optimize the length of CYCBD filter,and the combination of kurtosis and envelope spectrum peak was used as a step search index to search cycle frequency,so as to realized the adaptive noise reduction of CYCBD algorithm.Then,DARTS algorithm was introduced to achieve the self-construction of the rolling bearing fault recognition model.Finally,the effectiveness of the adaptive CYCBD-DARTS fault diagnosis method in multi-domain strong noise environment is verified by the published experimental dataset of rolling bearings.

fault diagnosisCYCBDDARTSself-adaptionrolling bearing

李可、陈方健、顾杰斐、宿磊、薛志钢

展开 >

江南大学 机械工程学院 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122

江苏省特种设备安全监督检验研究院 无锡分院,江苏 无锡 214071

故障诊断 最大2阶循环平稳解卷积 可微架构自搜索 自适应 滚动轴承

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(4)
  • 1