首页|基于机器视觉与听觉响应的干式变压器状态智能诊断方法

基于机器视觉与听觉响应的干式变压器状态智能诊断方法

扫码查看
为提升干式变压器的状态监测与故障诊断能力,提出了一种新的整合机器视觉与听觉响应的变压器状态诊断方法.首先,通过目标检测算法对干式变压器的潜在故障位置进行识别监控,获取其位置信息;其次,整合延迟求和波束成形算法计算其潜在故障位置的声学信息,利用该声学信息实时监控变压器是否出现放电缺陷;最后,对于无法快速诊断的机械故障,利用听觉外周模型获取听觉谱,依据其声音信号的特征频段,设置各特征频率获得多特征频率听觉谱,通过卷积神经网络进行变压器故障类型识别.实验结果显示,所提的方法在噪声情况下的变压器状态识别准确率仍高达87.51%,优于其他对比的时频域特征提取方法.故所提方法能较准确地诊断干式变压器状态,并且具备良好的抗噪性能,有效补充了当前变压器的监测手段.
Intelligent Diagnosis Method for Dry-type Transformer Status Based on Machine Vision and Auditory Response
A new transformer condition diagnosis method integrating machine vision and auditory response is proposed to enhance the status monitoring and fault diagnosis capability of dry-type transformers.Firstly,potential fault locations of the dry-type transformer are identified and monitored by target detection algorithms to obtain their positional information.Secondly,the acoustic information of the potential fault location is calculated by integrating the delay-and-sum beamforming algorithm,and the acoustic information is used to monitor the occurrence of discharge defects in real time.Finally,for me-chanical faults that cannot be quickly diagnosed,the auditory peripheral model is used to obtain the auditory spectrum.Based on the characteristic frequency bands of the sound signal,multiple feature frequency auditory spectra are obtained,and the transformer fault type is identified by a convolutional neural network.The experimental results show that the pro-posed method has an accuracy rate up to 87.51%for the transformer state recognition under noisy conditions,which is bet-ter than other comparative time-frequency domain feature extraction methods.Therefore,the proposed method can diagnose the state of dry-type transformers more accurately,has better noise resistance feature,and effectively complement the current monitoring methods for transformers.

fault diagnosisdry-type transformerstate detectionmachine visionacoustic imagingauditory periph-ery model

邵宇鹰、王枭、彭鹏、张阳、高健、袁国刚

展开 >

国网上海市电力有限公司,上海 200122

上海睿深电子科技有限公司,上海 201108

故障诊断 干式变压器 状态检测 机器视觉 声学成像 听觉外周模型

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(4)
  • 9