首页|基于声音振动信号的电动车状态识别研究

基于声音振动信号的电动车状态识别研究

扫码查看
当前电动车事故总是引起民众大量关注与讨论,故设计一种基于声音振动信号来判断电动车主要状态的识别方案,可以为车辆状况、驾驶习惯、事故鉴定等提供数据支持.在信号采集方面,设计并开发实时采集声音信号和振动信号的装置.在状态识别方面,研究一种小波包能量熵与改进灰狼搜索算法优化支持向量机参数的方法,寻找支持向量机最佳的惩罚系数和核函数,从而确定支持向量机状态识别模型.最后进行电动车不同状态下的实验测试,结果表明,相比于经验模态分解、变分模态分解、网格搜索算法、灰狼搜索算法,基于小波包能量熵与改进灰狼搜索算法优化支持向量机的方法对电动车运行状态识别具有准确率高、稳定性强的优势.
Research on Electric-vehicle Status Recognition Based on Sound and Vibration Signals
At present,electric vehicle accidents always attract a lot of attention and discussion from the public.This pa-per designs a recognition scheme based on sound and vibration signals to judge the main status of electric vehicles,which can provide data support for vehicle conditions,driving habits,accident identification,etc.In the aspect of signal acquisition,a device for real-time acquisition of sound signals and vibration signals is designed and developed.In the aspect of state rec-ognition,a method of wavelet packet energy entropy and improved Grey Wolf Optimization(GWO)to optimize the parame-ters of Support Vector Machine(SVM)is studied to find the best penalty coefficient and kernel function of SVM,so as to de-termine the state recognition model of the SVM.Finally,the experimental tests of electric vehicles in different states are per-formed.It shows that compared with the empirical mode decomposition(EMD),the variational mode decomposition(VMD),the grid search algorithm(GridSearch)and the gray wolf search algorithm,The method of optimizing support vector machine based on wavelet packet energy entropy and improved Grey Wolf Optimization has the advantages of high accuracy and strong stability for electric vehicle operation status recognition.

vibration and waveelectric vehiclestatus recognitionsupport vector machine

王奔、杨国伟、陶新明、王国帅、尹明杰、刘祖斌

展开 >

杭州电子科技大学 通信工程学院,杭州 310018

浙江工业大学 机械工程学院,杭州 310023

振动与波 电动车 状态识别 支持向量机

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(4)
  • 10