首页|基于加权多新息卡尔曼滤波算法的响应重构

基于加权多新息卡尔曼滤波算法的响应重构

扫码查看
针对卡尔曼滤波算法容易受到噪声的影响,使得响应重构精度降低甚至发散的问题,提出一种基于加权多新息卡尔曼滤波算法的响应重构方法。首先在融合多新息理论和卡尔曼滤波算法的基础上,引入加权矩阵动态调整新息矩阵的权重以降低历史干扰数据的累积影响。随后将该方法用于响应重构中,使用有限的加速度响应对其余未知位置处的加速度、速度以及位移响应进行重构。最后分别对起重机桁架和简支梁进行数值模拟和试验验证,结果表明与卡尔曼滤波算法和多新息卡尔曼滤波算法的响应重构方法相比,所提方法的滤波稳定性和估计精度得到改善,其能在运行时间增加很小的情况下有更高的重构精度。
Response Reconstruction Based on Weighted Multi-innovation Kalman Filter Algorithm
The Kalman filter algorithm is easy to be affected by noise,which makes the response reconstruction accura-cy descend or even diverge.To solve this problem,a response reconstruction method based on weighted multi-innovation Kalman filter algorithm is proposed.Firstly,based on the fusion of multi-innovation theory and Kalman filter algorithm,a weighted matrix is introduced to dynamically adjust the weights of the innovation matrix to reduce the influence of historical interference accumulation.Then,the proposed method is applied to the response reconstruction,and the finite acceleration re-sponses are used to reconstruct the acceleration,velocity,and displacement responses at the remaining unknown positions.Finally,numerical simulation and experimental verification are carried out on a crane truss and a simply supported beam re-spectively.The results show that compared with the response reconstruction methods based on the Kalman filter algorithm and the multi-innovation Kalman filter algorithm,the proposed method has better filtering stability and estimation accuracy,and can achieve higher reconstruction accuracy with little increase in operation time.

vibration and wavecraneresponse reconstructionKalman filtering algorithmmulti-innovation theoryweighted multiple innovation

马溢洁、彭珍瑞

展开 >

兰州交通大学 机电工程学院,兰州 730070

振动与波 起重机 响应重构 卡尔曼滤波算法 多新息理论 加权多新息

国家自然科学基金资助项目

62161018

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(5)