首页|参数优化VMD结合改进小波包阈值的去噪方法

参数优化VMD结合改进小波包阈值的去噪方法

扫码查看
针对轴承信号故障特征容易被噪声淹没的问题,提出一种参数优化变分模态分解结合改进小波包阈值的去噪方法.首先,通过变分模态分解(Variational Mode Decomposition,VMD)结合改进粒子群算法(Improve Particle Swarm Optimization,IPSO)将含噪信号分解为若干本征模态分量(Intrinsic Mode Function,IMF).以最大相关系数-相关峭度为准则,把IMF分为高值分量(High-value Intrinsic Mode Function,HIMF)和低值分量(Low-value Intrinsic Mode Function,LIMF).再对LIMF进行改进小波包(Improved Wavelet Packet,IWP)阈值去噪.最后对重构信号进行包络解调,提取轴承故障特征频率,完成故障诊断.实验结果表明,该方法不仅能够避免"过扼杀"现象,并且可以得到信噪比更高的去噪信号.
Denoising Method of Parameter Optimization VMD Combined with Improved Wavelet Packet Threshold
To solve the issue of bearing signal fault features being easily drowned out by noise,a parameter optimization variational mode decomposition(VMD)method combined with improved wavelet packet threshold denoising is proposed.Firstly,by using VMD combined with Improved Particle Swarm Optimization(IPSO),the noisy signals are decomposed into several Intrinsic Mode functions(IMF).Based on the criterion of maximum correlation coefficient-correlation kurtosis,the IMFs are divided into high-value Intrinsic Mode functions(HIMF)and low-value Intrinsic Mode functions(LIMF).The Improved wavelet packet threshold denoising is applied to the LIMF.Finally,the envelope of the reconstructed signal is demodulated,and the bearing fault characteristic frequency is extracted.And the fault diagnosis is completed.Experimental results show that the proposed method can not only overcome the phenomenon of"overkill",but also obtain the denoised signal with higher signal-to-noise ratio.

vibration and wavevariational mode decompositionwavelet packet threshold denoisingcorrelation kurtosiscorrelation coefficientbearing

张晓莉、黄嘉谞

展开 >

西安科技大学 通信与信息工程学院,西安 710054

振动与波 变分模态分解 小波包阈值去噪 相关峭度 相关系数 轴承

国家自然科学基金青年基金资助项目陕西省教育厅一般专项资助项目

6190135820JK0757

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(5)