噪声与振动控制2024,Vol.44Issue(5) :154-159.DOI:10.3969/j.issn.1006-1355.2024.05.025

高效带宽傅里叶分解及其轴承故障诊断应用

Efficient Bandwidth Fourier Decomposition and Its Application to Bearing Fault Diagnosis

王爽 宋秋昱 张驰 江星星 朱忠奎
噪声与振动控制2024,Vol.44Issue(5) :154-159.DOI:10.3969/j.issn.1006-1355.2024.05.025

高效带宽傅里叶分解及其轴承故障诊断应用

Efficient Bandwidth Fourier Decomposition and Its Application to Bearing Fault Diagnosis

王爽 1宋秋昱 2张驰 2江星星 3朱忠奎2
扫码查看

作者信息

  • 1. 苏州大学 应用技术学院,江苏 苏州 215325
  • 2. 苏州大学 轨道交通学院,江苏 苏州 215131
  • 3. 苏州大学 轨道交通学院,江苏 苏州 215131;山东交通学院 运输车辆检测、诊断与维修技术交通行业重点实验室,济南 250357
  • 折叠

摘要

自适应带宽傅里叶分解(Adaptive Bandwidth Fourier Decomposition,ABFD)是一种基于带宽优化的非平稳信号分析方法.然而,以中心频率重叠度作为分解终止条件在实际应用中会分解出若干冗余的模式分量,造成分解效率降低,为后续分析增加负担.为此,提出高效带宽傅里叶分解(Efficient Bandwidth Fourier Decomposition,EBFD)的轴承故障诊断方法.该方法构建重加权峭度引导的快速停止准则,能够高效地确定最优分解模式数目,避免大量冗余分量的干扰.进一步地,根据重加权峭度指标定位出目标故障分量,实现轴承故障诊断.滚动轴承故障试验信号分析结果表明:所提出方法能够高效终止分解进程,得到所有潜在的模式分量,并准确定位出故障分量;由EBFD与ABFD提取故障分量的归一化频率能量比均为1.0,EBFD运行所需时间为3.3 s,分解速度相较于ABFD提高33.8 s;相较于其他信号分析方法,采用所提出方法能够更准确识别出轴承故障特征.

Abstract

Adaptive bandwidth Fourier decomposition(ABFD)is an analysis method for non-stationary signals based on bandwidth optimization.However,taking the overlapping degree of central frequencies as the decomposition termination condition will yield many redundant modes in practical applications,which will reduce the decomposition efficiency and in-crease the burden for subsequent analysis.Therefore,an efficient bandwidth Fourier decomposition(EBFD)is proposed for bearing fault diagnosis.In this method,a weighted kurtosis guided fast-stop criterion is constructed,which can efficiently de-termine the optimal number of decomposed modes and avoid the interference of a large number of redundant components.Further,the target fault component is located according to the weighted kurtosis index to realize bearing fault diagnosis.Analysis results of rolling bearing fault test signal show that the proposed method can effectively terminate the decomposi-tion process,obtain all potential modes and accurately locate fault components;The normalized frequency-to-energy ratio of fault components extracted by EBFD and ABFD is 1.0,the time required for EBFD operation is 3.3 s,and the decomposition speed is 33.8 s higher than that of ABFD;Compared with other signal analysis methods,the proposed method can more accu-rately identify the bearing fault characteristics.

关键词

故障诊断/带宽傅里叶分解/轴承/重加权峭度

Key words

fault diagnosis/bandwidth Fourier decomposition/bearing/reweighted kurtosis

引用本文复制引用

基金项目

国家自然科学基金资助项目(52172406)

国家自然科学基金资助项目(51875376)

中国博士后科学基金资助项目(2021M702752)

中国博士后科学基金资助项目(2022T150552)

运输车辆检测、诊断与维修技术交通行业重点实验室开放基金资助项目(JTZL2104)

出版年

2024
噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
段落导航相关论文