首页|基于双通道数据主振动特征提取的水电机组轴系故障诊断

基于双通道数据主振动特征提取的水电机组轴系故障诊断

扫码查看
相对于特征层和决策层融合,数据层融合可以充分保留数据中的原始诊断信息,从而为后续故障诊断奠定基础.为此,提出一种基于双通道数据主振动特征提取的水电机组轴系故障诊断方法.该方法首先利用主成分分析(Principal Component Analysis,PCA)对轴系双通道时域振动信号进行数据层融合,得到最大振动强度方向上的合成振动(简称主振动);随后,对主振动进行特征提取,再利用支持向量机(Support Vector Machine,SVM)进行分类,从而实现故障诊断.利用转子台数据对所提方法进行验证.结果表明,与直接利用单通道进行诊断或通过双通道进行特征层融合诊断相比,所提方法可以消除主振动方向变化带来的影响,提升类内聚类和类间分离的效果,最终提高故障诊断的准确率.
Fault Diagnosis Based on Primary Vibration Feature Extraction of Dual-channel Data for Shaft Systems of Hydropower Units
Compared with feature-level and decision-level fusion,data-level fusion can preserve more raw information for further fault diagnosis so as to lay the foundation for subsequent fault diagnosis.In this paper,a fault diagnosis method based on primary vibration feature extraction of dual-channel data is presented for shaft systems of hydropower units.Firstly,the principal component analysis(PCA)model is used to integrate the dual-channel time-domain vibration signals collected from shaft systems into the composite vibration signals in the direction of the strongest vibration(i.e.the primary vibration).Secondly,time-domain features are extracted from the primary vibration.Finally,a classifier based on support vector ma-chine(SVM)is adopted for fault diagnosis.Experiments were carried out to validate the proposed method.The results show that compared with the methods based on single channel or on dual-channel feature-level fusion,the proposed method can eliminate the influence of changes in primary vibration directions,and improve the effects of intra-class clustering and inter-class separating thereby.As a result,it can improve the diagnostic accuracy.

fault diagnosishydropower unitdata-level fusionprincipal component analysissupport vector machine

付骏宇、许景辉

展开 >

西北农林科技大学 水利与建筑工程学院动力与电气工程系,陕西 杨凌 712100

故障诊断 水电机组 数据层融合 主成分分析 支持向量机

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(5)