首页|一种齿轮故障协同诊断与预警方法

一种齿轮故障协同诊断与预警方法

扫码查看
针对齿轮故障诊断与演化监测问题,提出一种快捷、有效的协同诊断与预警方法。首先,采用小波变换与相关性准则筛选反映齿轮故障冲击特性较强的共振频带;其次,通过Hilbert变换获取包络解调信号,使用自相关滤除噪声干扰;然后,运用倒频谱将包络信号频谱上的一系列边频谱线简化为单根谱线,获取故障特征;最后,构建预警特征量:倒频谱幅值比(Cepstral Amplitude Ratio,CAR),用于表征故障演化趋势。两组高采样频率公开数据集的分析结果表明:相比于其他典型方法和指标,所提协同诊断法得到的故障特征频率对应的谱峰更加清晰,所提指标可更好反映故障演化趋势。
Collaborative Diagnosis and Early Warning Method for Gear Faults
Aiming at the problems of gear fault diagnosis and evolution monitoring,a fast and effective collaborative diagnosis and early warning method were proposed.Firstly,wavelet transform and correlation criterion were used to select the resonance band which reflects the strong fault impact characteristics of gear.Secondly,the envelope demodulation signal was obtained by Hilbert transform,and the noise interference was removed by autocorrelation filter.Then,a series of side spectral lines on the envelope signal spectrum were simplified to a single spectral line by using cepstrum to obtain fault char-acteristics.Finally,Cepstral Amplitude Ratio (CAR) was constructed to represent the fault evolution trend.The analysis re-sults of two sets of public data with fine sampling frequency show that compared with other typical methods and indicators,the spectral peaks corresponding to the fault characteristic frequency obtained by the proposed collaborative diagnosis meth-od are clearer,and the proposed indicators can better reflect the fault evolution trend.

fault diagnosisgearmulti-method collaborationevolution monitoringfine sampling frequency

盛嘉玖、陈果、贺志远、康玉祥、王浩、尉询楷

展开 >

南京航空航天大学 民航学院,南京 211106

南京航空航天大学 通用航空与飞行学院,江苏 溧阳 213300

北京航空工程技术研究中心,北京 100076

故障诊断 齿轮 多方法协同 演化监测 高采样频率

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(6)