噪声与振动控制2024,Vol.44Issue(6) :185-190,197.DOI:10.3969/j.issn.1006-1355.2024.06.028

基于并行特征提取的轴承故障诊断方法

Bearing Fault Diagnosis Method Based on Parallel Feature Extraction

郑皓文 汪凯 程源 冯郑雨 高力凯 沈文学
噪声与振动控制2024,Vol.44Issue(6) :185-190,197.DOI:10.3969/j.issn.1006-1355.2024.06.028

基于并行特征提取的轴承故障诊断方法

Bearing Fault Diagnosis Method Based on Parallel Feature Extraction

郑皓文 1汪凯 1程源 1冯郑雨 1高力凯 1沈文学2
扫码查看

作者信息

  • 1. 成都理工大学 机电工程学院,成都 610059
  • 2. 成都吉通航空精密机电有限公司,成都 611130
  • 折叠

摘要

应对在工业噪声环境下如何提高现有轴承故障诊断方法的鲁棒性能和泛化性能,提出一种卷积自编码器-长短期记忆(Convolutional AutoEncoder-Long Short-Term Memory,CAE-LSTM)并行特征提取模型.该方法使用CAE编码器冻结的局部空间特征融合长短期记忆-1维卷积网络(Long Short-Term Memory-1-dimensional Convolutional Neural Network,LSTM-1DCNN)所提取的时序相关性特征完成模型训练,在特征融合过程引入有效通道注意力机制(Efficient Channel Attention,ECA)完成特征的权重分配,实现全局特征信息的充分提取,最终通过Softmax函数输出轴承的故障诊断结果.在自测和公开的轴承数据集上进行实验验证,其对比实验结果表明:所提出的并行特征提取模型具备优良的轴承故障诊断性能,且具备较好的噪声鲁棒性和泛化能力.

Abstract

Aiming at the improvement of the robustness and generalization performance of existing bearing fault diag-nosis methods in industrial noise environment,a model of parallel features extraction by convolutional autoencoder-long short-term memory (CAE-LSTM) was proposed.This method used the local spatial features frozen by the encoder to fuse the temporal correlation features extracted by long short-term memory-1-dimensional convolutional neural network (LSTM-1DCNN) to complete the model training.In the process of feature fusion,an effective channel attention (ECA) mechanism was introduced to complete the weight distribution of features,and the full extraction of global feature information was real-ized.Finally,the fault diagnosis results of the bearing were output through the Softmax function.The experimental verifica-tion was carried out on the self-test and public bearing data sets.The comparative experimental results show that:the parallel feature extraction model proposed in this study has excellent bearing fault diagnosis performance,as well as good noise ro-bustness and generalization ability.

关键词

故障诊断/轴承/并行特征/CAE/LSTM/特征融合

Key words

fault diagnosis/bearing/parallel features/CAE/LSTM/features fusion

引用本文复制引用

出版年

2024
噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
段落导航相关论文