首页|基于并行特征提取的轴承故障诊断方法

基于并行特征提取的轴承故障诊断方法

扫码查看
应对在工业噪声环境下如何提高现有轴承故障诊断方法的鲁棒性能和泛化性能,提出一种卷积自编码器-长短期记忆(Convolutional AutoEncoder-Long Short-Term Memory,CAE-LSTM)并行特征提取模型。该方法使用CAE编码器冻结的局部空间特征融合长短期记忆-1维卷积网络(Long Short-Term Memory-1-dimensional Convolutional Neural Network,LSTM-1DCNN)所提取的时序相关性特征完成模型训练,在特征融合过程引入有效通道注意力机制(Efficient Channel Attention,ECA)完成特征的权重分配,实现全局特征信息的充分提取,最终通过Softmax函数输出轴承的故障诊断结果。在自测和公开的轴承数据集上进行实验验证,其对比实验结果表明:所提出的并行特征提取模型具备优良的轴承故障诊断性能,且具备较好的噪声鲁棒性和泛化能力。
Bearing Fault Diagnosis Method Based on Parallel Feature Extraction
Aiming at the improvement of the robustness and generalization performance of existing bearing fault diag-nosis methods in industrial noise environment,a model of parallel features extraction by convolutional autoencoder-long short-term memory (CAE-LSTM) was proposed.This method used the local spatial features frozen by the encoder to fuse the temporal correlation features extracted by long short-term memory-1-dimensional convolutional neural network (LSTM-1DCNN) to complete the model training.In the process of feature fusion,an effective channel attention (ECA) mechanism was introduced to complete the weight distribution of features,and the full extraction of global feature information was real-ized.Finally,the fault diagnosis results of the bearing were output through the Softmax function.The experimental verifica-tion was carried out on the self-test and public bearing data sets.The comparative experimental results show that:the parallel feature extraction model proposed in this study has excellent bearing fault diagnosis performance,as well as good noise ro-bustness and generalization ability.

fault diagnosisbearingparallel featuresCAELSTMfeatures fusion

郑皓文、汪凯、程源、冯郑雨、高力凯、沈文学

展开 >

成都理工大学 机电工程学院,成都 610059

成都吉通航空精密机电有限公司,成都 611130

故障诊断 轴承 并行特征 CAE LSTM 特征融合

2024

噪声与振动控制
中国声学学会

噪声与振动控制

CSTPCD北大核心
影响因子:0.622
ISSN:1006-1355
年,卷(期):2024.44(6)