首页|县域城镇增长与收缩的空间识别及影响因素研究——以苏州的县级市为例

县域城镇增长与收缩的空间识别及影响因素研究——以苏州的县级市为例

扫码查看
文章选取苏州县级市34个乡镇(街道),运用单维人口识别和多维综合指标识别两种方法,分别对苏州县级市的城镇增长与收缩情况进行空间识别:(1)在单维人口识别方面,共有11个收缩城镇,增长城镇有23个;(2)在多维综合指标识别方面,收缩城镇和增长城镇数量相同,皆为17个;(3)综合两种识别方法,增长城镇有24个,收缩城镇有10个,目前太仓市、张家港市和常熟市都存在收缩城镇,而昆山市尚无收缩城镇且皆为增长城镇.基于此,利用面板数据模型,从人口、经济和社会3个角度来探究城镇增长与收缩的影响因素,并对苏州县级市城镇未来发展提出了有关建议.
Research on the Spatial Identification and Influencing Factors of Urban Growth and Shrinkage in County Areas:A Case Study of County-level Cities in Suzhou
The article selects 34 towns(streets)in Suzhou county-level cities,and uses two methods of single-dimensional population identification and multi-dimensional comprehensive index identification to spatially identify the urban growth and shrinkage of Suzhou county-level cities.The following conclusions are obtained:(1)In terms of single dimension population recognition,there are 11 shrinking towns and 23 growing towns;(2)In terms of multi-dimensional comprehensive indicator identification,the number of shrinking towns and growing towns is the same,both of which are 17;(3)Based on the two identification methods,there are 24 growth towns and 10 shrinkage towns.At present,Taicang,Zhangjiagang and Changshu all have shrinkage towns,while Kunshan has no shrinkage towns and they are all growth towns.Based on this,the panel data model is used to explore the influencing factors of urban growth and shrinkage from the perspectives of population,economy and society,and to put forward relevant suggestions for the future development of small towns in Suzhou county-level cities.

urban growthurban shrinkagespatial recognitioninfluencing factorscounty-level cities in Suzhou

徐懿德、尚正永

展开 >

苏州科技大学建筑与城市规划学院

苏州地理科学与测绘工程学院

城镇增长 城镇收缩 空间识别 影响因素 苏州县级市

2024

中外建筑
中华人民共和国住房和城乡建设部信息中心

中外建筑

影响因子:0.519
ISSN:1008-0422
年,卷(期):2024.(12)