首页|基于Resnet-101模型的烟蚜数量图像识别系统开发

基于Resnet-101模型的烟蚜数量图像识别系统开发

扫码查看
烟蚜是危害烟草生长的主要害虫之一.烟蚜发生量的准确识别及为害程度的精准分级对指导防控至关重要.本研究通过采集烟草生长过程中烟蚜在烟株上发生数量的图片,补充图像采用锐化、翻转、亮度改变等数据增强方法,构建了烟蚜危害作物图像数据集.并对烟蚜数量图片进行3级分类,分为轻度发生、中度发生、重度发生.采用Resnet-101模型进行图像识别训练.根据模型参数结果表明,在Resnet-101训练周期中训练集准确率平均值为85.49%,最高值为87.33%;测试集准确率平均值为80.13%,最高值为89.92%;识别系统在烟草蚜虫数量识别方面平均准确率为83.00%.本研究实现烟蚜数量等级图像识别,为烟草虫害自动化防治系统的开发提供模型支撑.
Development of Image Recognition System for Tobacco Aphid Based on Resnet-101 Model
Myzus persicae are one of the main pests that harm the growth of tobacco.The accu-rate identification of the occurrence of tobacco aphids and the precise grading of the severity of their damage are crucial for guiding prevention and control.This study collected images of the number of M.persicae on tobacco plants during tobacco growth,and supplemented the images with data augmentation methods such as sharpening,flipping,and brightness changes to con-struct a dataset of crop images of M.persicae infestation.The images of the number of M.per-sicae were classified into three levels:mild occurrence,moderate occurrence,and severe occur-rence.Resnet-101 model was used for image recognition training.According to the model pa-rameter results,the average accuracy of the training set in the Resnet-101 training cycle was 85.49%,with the highest value being 87.33%.The average accuracy of the test set was 80.13%,and the highest value was 89.92%.The average accuracy of the recognition system in identifying the number of M.persicae was 83.00%.This study achievedquantitative image rec-ognition of the number of M.persicae,providing model support for the development of an au-tomated tobacco pest control system.

tobacco aphidsResnet-101 modelimage recognitiondata augmentation

孙佳照、李群岭、林小兴、梁桂广、胡亚杰、李力、丁伟

展开 >

西南大学植物保护学院,重庆 400715

广西中烟工业有限责任公司,南宁 530000

烟蚜 Resnet-101模型 图像识别 数据增强

广西中烟工业有限责任公司项目

0633-224042118J00

2024

植物医学
西南大学 贵州省植保植检站

植物医学

影响因子:0.171
ISSN:2097-1354
年,卷(期):2024.3(4)