Soil physical properties and herbaceous community distribution in different microtopographies of Otindag Sandy Land and their correlation analysis
Soil physical properties ( including water content, field capacity, bulk density, total porosity and capillary porosity) in different soil layers (0-10, 10-20 and 20-40 cm), herbaceous community productivity ( including coverage and biomass of above?ground part ) and species diversity ( including Margalef richness index, Simpson diversity index, Shannon?Wiener diversity index and Pielou evenness index) of windward slope, slope top, leeward slope and interdune in Otindag Sandy Land of Inner Mongolia were compared and analyzed by a combination method of field sampling and laboratory testing. On this basis, correlations of soil physical properties with herbaceous community indexes and herbaceous community productivity with species diversity indexes of different microtopographies were analyzed by Pearson' s correlation analysis method. The results show that in general, there are significant differences in soil physical properties of four microtopographies, while there is no significant difference in that of different soil layers. Soil water content, field capacity, total porosity and capillary porosity decrease successively in the sequence from interdune, leeward slope, slope top to windward slope, while soil bulk density increases successively, indicating that windward slope has a poor soil structure and loses much water, but soil structure and water situation in interdune are relatively good. In addition, there are also significant differences in herbaceous community productivity and species diversity of different microtopographies, which decrease successively in the sequence from leeward slope, interdune, slope top to windward slope, only Margalef richness index is the highest in interdune and the lowest in windward slope, indicating that herbaceous community species diversity is low and community stability is poor in windward slope, but herbaceous community species diversity and productivity level are high and community stability is relatively good in leeward slope and interdune. Correlation analysis results show that herbaceous community productivity and species diversity are negatively correlated with soil bulk density in this region, and are positively correlated with other soil physical properties, but significant or extremely significant correlation is only between some of these indexes. Moreover, there is a positive correlation between productivity and species diversity indexes of herbaceous community, but there is no significant correlation between most of these indexes. It is suggested that microtopographies could significantly affect soil physical properties and herbaceous community distribution pattern of Otindag Sandy Land, climate and artificial interference seriously damage its soil physical properties, which results in reduced productivity and instability of herbaceous community.
Otindag Sandy Landmicrotopographysoil physical propertyherbaceous community productivityspecies diversitycorrelation analysis