首页|基于深度置信网络和SVM的铣刀磨损状态识别

基于深度置信网络和SVM的铣刀磨损状态识别

扫码查看
针对人工提取的磨损指标无法全面表达铣削磨损特征的问题,提出基于改进深度置信网络(IDBN)与支持向量机(SVM)的刀具磨损识别模型.首先对刀具切削力、振动和AE信号在时域、频域、时频域进行特征提取;其次采用IDBN对提取的特征降维;最后利用改进的海鸥算法优化支持向量机(ISOA-SVM)构建磨损识别模型.结果表明,经过 100 次随机分层抽样,IDBN-ISOA-SVM对刀具磨损的平均识别率达到99%以上.从降维手段、优化算法及分类模型三个方面与其他算法对比,该模型有较高的识别率和泛化性,能够准确识别铣刀磨损状态.
Milling cutter wear state recognition based on deep belief network and SVM
To the issue that manually extracted wear indicators cannot entirely express milling wear characteristics,a tool wear recognition model based on improved deep belief network(IDBN)and support vector machine(SVM)is proposed.Firstly,the characteristics of cutting force,vibration and AE signal in time domain,frequency domain and time-frequency domain are extracted.Secondly,improved deep belief network is used to reduce the dimensionality of extracted features.Finally,the improved seagull optimization algorithm was used to realize the tool wear state recognition model by optimizing support vector machine.The experimental results show that after 100 random stratified sampling,the average recognition rate of IDBN-ISOA-SVM for tool wear is more than 99%.Compared with other algorithms,this model can accurately identify the wear state of the milling cutter from three aspects:dimensionality reduction method,optimization algorithm and classification model.

wear state identificationDBNseagull optimization algorithmSVM

田雅琴、侯寅智、胡梦辉、刘文涛、邢炜晨

展开 >

太原科技大学机械工程学院, 山西 太原 030024

宝钢股份冷轧厂, 上海 201900

磨损状态识别 深度置信网络 海鸥算法 支持向量机

山西省重点研发项目

202102020101011

2024

重型机械
中国重型机械研究院股份公司

重型机械

影响因子:0.213
ISSN:1001-196X
年,卷(期):2024.(2)
  • 11