首页|面向边缘智能的通信计算一体化研究

面向边缘智能的通信计算一体化研究

扫码查看
为了进一步提高无线数据聚合效率,空中计算技术通过利用无线信道波形叠加特性允许模型更新信息在空中"一次性"完成聚合,实现通信网与算力网的"网媒融合"。然而在这过程中,信道衰落和噪声可能会带来聚合失真。此外,更新数据的质量以及边缘设备的传输能耗也可能影响模型聚合以及收敛效率。为此提出了基于空中计算的联邦学习系统,并针对其存在的信道干扰、高效数据传输和数据失真问题建立动态设备调度机制,在满足接收端信噪比条件下选择适当数量质量较高的设备参与模型训练。该机制利用梯度重要性、信道条件和传输能耗衡量设备质量并保留累积未被选择设备的梯度以加速收敛。基于李雅普诺夫优化理论进行问题建模和求解,仿真结果表明该机制具有较高训练精度和较快收敛速度,同时针对不同噪声功率具有一定鲁棒性。
Integrated Communication and Computation for Edge Intelligence
Over-the-air computation(AirComp)technology leverages the waveform superposition characteristics of wireless channels to further enhance the efficiency of wireless data aggregation,enabling model update information to be aggregated"in one shot".This achieves a conver-gence of communication networks and computational power networks,exemplifying the concept of"network and computation fusion".How-ever,channel fading and noise may introduce aggregation distortion during this process.Additionally,the quality of update information and the transmission energy consumption of edge devices can impact model aggregation and convergence efficiency.Therefore,we establish an Air-Comp enabled federated learning system and propose a dynamic device scheduling mechanism to address issues related to channel interfer-ence,efficient data transmission,and data distortion.Specifically,an appropriate number of higher-quality devices are selected to participate in model training while satisfying receiving signal-to-noise ratio conditions.It utilizes gradient importance,channel conditions,and transmission energy consumption to assess device quality and retains and accumulates gradients from unselected devices to accelerate convergence.The problem is modeled and solved based on the Lyapunov optimization theory.Simulation results demonstrate that this mechanism achieves higher training accuracy,faster convergence speed,and a certain level of robustness against varying noise power levels.

over-the-air computationfederated learningdevice schedulingdevice qualityrobustness

江炳青、杜军、王劲涛、牟林

展开 >

清华大学电子工程系,中国 北京 100084

中兴通讯股份有限公司,中国 深圳 518057

移动网络和移动多媒体技术国家重点实验室,中国 深圳 518055

空中计算 联邦学习 设备调度 设备质量 鲁棒性

国家自然科学基金项目国家自然科学基金项目

U23A2028161971257

2024

中兴通讯技术
中兴通讯股份有限公司,安徽科学技术情报研究所

中兴通讯技术

CSTPCD北大核心
影响因子:1.272
ISSN:1009-6868
年,卷(期):2024.30(z1)