首页|融合GF-2与开放地图数据的城市绿地精细化分类研究

融合GF-2与开放地图数据的城市绿地精细化分类研究

扫码查看
城市绿地是城市生态效益的重要载体,高精度的绿地目标检测与属性分类为优化城市生态空间结构、维护城市生态平衡以及建设"碳中和"城市提供基础数据支撑.通过改进经典U-Net算法,进行GF-2多光谱遥感影像图像分类;同时,基于景观生态学理论,采用POI和OSM为代表的开放地图数据,对绿地斑块进行多维度精细化分类;进一步选择深圳市福田区与罗湖区交界处的矩形区域为样本进行验证.结果表明:所提出的ASPP+SFAM融合U-Net网络模型与U-Net和U-Net3+模型相比,所识别的城市绿地边界和真实城市绿地边界更吻合.所提出的模型的总体分类精度为90.87%,比U-Net和U-Net3+模型分别提高了11.13%和7.39%.同时,针对遥感影像纹理特征无法直接进行小区域城市绿地社会属性分类的问题,利用POI数据包含的属性信息、城市绿地与OSM道路网的拓扑关系以及景观形态指数,最终实现功能分类、类型特征、服务范围和形态特征4个维度的城市绿地的精细化分类.
Study on the fine-grained classification of urban green spaces by integrating GF-2 satellite imagery with open map data
Urban green space was an important carrier of urban ecological benefits.Highly accurate spatial monitoring target detec-tion and attribute classification of green space provided data support for optimizing urban ecological spatial structure,maintaining urban ecological balance and building the"carbon-neutral"city.This study improved the classical U-Net algorithm and apply it to GF-2 multi-spectral remote sensing image classification.Furthermore,drawing upon landscape ecology theory and utilizing open map data re-presented by POI and OSM,this paper performed multidimensional fine-grained classification of green patches.For the method pro-posed,this paper selected a rectangular area at the intersection of Futian District and Luohu District in Shenzhen City as the sample for validation.The results showed that the ASPP+SFAM fused U-Net network model proposed in the study matches the identified urban green space boundaries and the real urban green space boundaries more closely than the U-Net and U-Net3+models.The overall classification accuracy of the model was 90.87%,which was 11.13%and 7.39%better than the U-Net and U-Net3+models,re-spectively.Meanwhile,to address the problem that the texture features of remote sensing images could not directly classify the social at-tributes of urban green space in small areas,this study used the attribute information contained in POI data,the topological relationship between urban green space and OSM road network,and the landscape morphology index.Finally,this paper have realized the refine clas-sification of urban green space with four dimensions of functional classification,type characteristics,service scope and morphological characteristics.

urban green spacesclassificationU-Net networkPOIOSM

黄芳、曹芳洁、王潜心

展开 >

中国矿业大学环境与测绘学院,江苏徐州 221116

城市绿地 分类 U-Net网络 兴趣点 开放街道数据

国家重点研发计划子课题国家部门重点实验室开放基金

2020YFA0713502SKLGIE2014-Z-1-1

2024

资源开发与市场
四川省自然资源科学研究院

资源开发与市场

CSTPCDCHSSCD
影响因子:0.581
ISSN:1005-8141
年,卷(期):2024.40(3)
  • 36