首页|资源枯竭型城市的低效空间识别方法——以鹤岗市为例

资源枯竭型城市的低效空间识别方法——以鹤岗市为例

扫码查看
[目的]本文以资源枯竭型城市的低效空间为研究对象,提出一种低效空间的识别方法,并以鹤岗市为例,验证了方法的可靠性,构建了城市低效空间数据库。[方法]通过文献综述,系统性地归纳了资源枯竭型城市所面临的系列空间问题,并结合鹤岗市的实际情况,选择采矿塌陷区、城市空地、失序空间和废弃建筑进行研究。在现有数据基础上,创新性地引入了基于深度学习模型的自动检测技术,基于城市遥感图片、城市街景图片等图片数据源,完成了针对4类低效空间的识别。[结果]本文采用DeepLab V3模型和SegNet模型生成了鹤岗市低效空间数据集,并通过实地调研对识别结果进行了完善。研究形成了鹤岗市低效城市空间数据库,并分析了采矿塌陷区、城市空地、失序空间和废弃建筑在城市中的分布情况。[结论]鹤岗市的实际应用证实了研究方法能够高效、快速、准确地识别城市尺度的低效空间,为资源枯竭型城市的低效空间识别提供了有效的技术支持。此外,本文提出的研究方法在识别对象的定义、技术细节等层面依然存在改善空间,亟待后续研究完善。
Identification of inefficient spaces in resource-depleted cities:A case study of Hegang City
[Objective]In the new phase of industrialization and urbanization in China,resource-depleted cities are facing various development challenges.Taking the characteristics of resource-dependent cities as a starting point,this study,using Hegang City as an example,proposed a method for identifying inefficient spaces to address typical spatial issues in resource-depleted cities.[Methods]Through a literature review,this study systematically identified a series of spatial issues faced by resource-depleted cities.Based on the actual situation in Hegang City,problems related to mining subsidence areas,urban vacant land,spatial disorder areas,and abandoned buildings were recognized.Building upon existing data,this study introduced innovative deep learning models for automatic detection that identify urban vacant land,spatial disorder areas,and abandoned buildings.[Results]This study employed the DeepLab V3 and SegNet models to generate a dataset of inefficient spaces in Hegang City.The identification results were refined through field surveys.The research visualized the distribution of mining subsidence areas,urban vacant land,spatial disorder areas,and abandoned buildings within the city.[Conclusion]The practical application in Hegang City demonstrated that the research methods are capable of efficiently,quickly,and accurately identifying inefficient spaces at the city scale.This provides an effective technical support for the identification of inefficient spaces in resource-depleted cities.However,there is still room for improvement in the definition of the objects being identified and in the technical details of the proposed research methods,necessitating further research for enhancement.

resource-depleted citiesdeep learningurban vacant landdisordered spaceineffi-cient spaceHegang City

王新宇、孟祥凤、王春龙、杨灵、张远景、龙瀛

展开 >

清华大学建筑学院,北京 100084

中国矿业大学建筑与设计学院,徐州 221116

黑龙江省城市规划勘测设计研究院,哈尔滨 150040

浙江科技大学土木与建筑工程学院,杭州 310023

浙江大学城乡规划设计研究院有限公司,杭州 310030

展开 >

资源枯竭型城市 深度学习 城市空地 失序空间 低效用地 鹤岗市

国家自然科学基金国家社会科学基金

5217804422BRK020

2024

资源科学
中国科学院地理科学与资源研究所 中国自然资源学会

资源科学

CSTPCDCSSCICHSSCD北大核心
影响因子:2.408
ISSN:1007-7588
年,卷(期):2024.46(6)