首页|基于集成特征选择的中小微企业信贷风险分类模型研究

基于集成特征选择的中小微企业信贷风险分类模型研究

扫码查看
文章以客户违约率作为中小微企业信用风险的评价标准,尝试构造基于集成特征选择的中小微企业信用风险分类模型,结合互信息矩阵、基于k折交叉验证的随机森林和支持向量机对模型进行分析.研究表明企业的信誉等级、销项有效率和最高销项对信用风险有显著影响,其他因素对信用风险的影响不显著,实验说明基于k折交叉验证的支持向量机具有可靠的信贷风险预测能力,对中小微企业信用风险评估有较强的参考价值.
Research on Credit Risk Classification Model of SMEs Based on Ensembled Feature Selection
Taking the customer default rate as the evaluation standard of SMEs'credit risk,this pa-per attempts to construct a credit risk classification model for SMEs based on integrated feature selec-tion,and analyzes the model by combining mutual information matrix,random forest based on cross validation and support vector machine.The results show that the reputation rating,output efficiency and the highest output of enterprises have significant effects on credit risk,while other factors have no significant effects on credit risk,Furthermore,the experiment shows that the support vector ma-chine based on cross validation has a reliable credit risk prediction ability,and has a strong refer-ence value for micro credit risk assessment of SMEs.

ensembled feature selectionclassified modelsupport vector machinecredit risk

路佳佳、王国兰

展开 >

山西工商学院计算机信息工程学院,太原 030006

集成特征选择 分类模型 支持向量机 信贷风险

山西省高等学校科技创新项目山西工商学院校级科研课题

20232487202255

2024

中央民族大学学报(自然科学版)
中央民族大学

中央民族大学学报(自然科学版)

影响因子:0.462
ISSN:1005-8036
年,卷(期):2024.33(1)
  • 15