首页|基于参数共享的篇章级蒙汉神经机器翻译

基于参数共享的篇章级蒙汉神经机器翻译

扫码查看
针对传统蒙汉神经机器翻译缺少对篇章上下文的有效利用问题,构建了基于Transformer模型的篇章级蒙汉神经机器翻译模型,编码端使用相对注意力机制对多个句子检索全局上下文信息,解码端使用基于缓存的方法记录已翻译句子的相关信息,在预测当前句子的过程中,使用缓存的句子信息作为篇章上下文信息,同时利用分组策略共享层与层之间的参数,减少模型的参数量,在有限的内存中尽可能多地提高语料的利用率.实验结果表明,融合参数共享策略的篇章级模型比句子级Transformer模型在BLEU4上高8.7,比不加入参数共享的篇章级机器翻译模型在BLEU4上高2.49.
Mongolian-Chinese Neural Machine Translation at Text Level Based on Parameter Sharing
Aiming at the lack of effective use of text context in traditional Mongolian-Chinese neural machine translation,a chapter-level Mongolian-Chinese neural machine translation model based on the Transformer model is constructed.The encoder uses a relative attention mechanism to retrieve global context information for multiple sentences,and the decoder uses a cache-based method re-cords the relevant information of the translated sentence,and uses the cached sentence information as the text context information in the process of predicting the current sentence.At the same time,the grouping strategy is used to share the parameters between layers,reduces the amount of parame-ters in the model,and improves the utilization of corpus as much as possible in the limited memory.The experimental results show that our experiment is 8.7 higher than the sentence-level Transformer on BLEU4,and 2.49 higher than the chapter-level machine translation model without parameter sharing on BLEU4.

Mongolian-Chinese neural machine translationparameter sharingdiscourse context

张根茂、田永红、郝佳、张佳颖

展开 >

河南工学院智能工程学院,河南新乡 453000

内蒙古工业大学数据科学与应用学院,内蒙古呼和浩特 010080

蒙汉神经机器翻译 参数共享 篇章上下文

新乡市社科联调研课题新乡市社科联调研课题

SKL-2023-246SKL-2023-248

2024

中央民族大学学报(自然科学版)
中央民族大学

中央民族大学学报(自然科学版)

影响因子:0.462
ISSN:1005-8036
年,卷(期):2024.33(2)
  • 12