首页|基于ResNet和注意力机制的路面裂缝识别

基于ResNet和注意力机制的路面裂缝识别

扫码查看
针对路面裂缝图像识别中存在的特征关注不足以及光照、尺度和遮挡等干扰和噪声问题,本文提出了一种改进的ResNet路面裂缝分类方法.首先使用基础的ResNet18作为主干网络提取路面裂缝特征,其次在基础模型的每个残差块后引入注意力模块,以引导网络对裂缝区域的关注.使用自建的路面裂缝数据集对本文模型与多个主流模型进行比较,并对优化前后的模型进行了对比实验.实验结果表明,文中模型在自建的路面裂缝数据集上的准确率、召回率和精确率均高于基线模型,分别达到了 94.30%、94.33%和94.49%,裂缝分类结果准确有效,模型可在无人为干预的情况下满足对路面裂缝分类的需求.
Pavement Crack Recognition Based on ResNet and Attention Mechanism
In order to solve the problems of insufficient feature attention and interference and noise problems such as lighting,scale and occlusion in pavement crack image recognition,an improved ResNet pavement crack classification method is proposed.Firstly,the basic ResNet18 is used as the backbone network to extract the pavement crack features,and secondly,the attention module is in-troduced after each residual block of the basic model to guide the network to pay attention to the crack area.The self-built pavement crack dataset was used to compare the proposed model with mul-tiple mainstream models,and the models before and after optimization were compared with each oth-er.Experimental results show that the accuracy,recall and precision of the proposed model on the self-built pavement crack dataset are higher than those of the baseline model,reaching 94.30%,94.33%and 94.49%,respectively,and the crack classification results are accurate and effective,and the model can meet the needs of pavement crack classification without human intervention.

ResNet networkattention mechanismpavement cracksdeep learning

韦洁瑶、韩梦丹、蒲秋梅

展开 >

中央民族大学信息工程学院,北京 100081

ResNet网络 注意力机制 路面裂缝 深度学习

2024

中央民族大学学报(自然科学版)
中央民族大学

中央民族大学学报(自然科学版)

影响因子:0.462
ISSN:1005-8036
年,卷(期):2024.33(4)